Crustacea Decapoda : Studies on the genus Munida Leach, 1820 (Galatheidae) in New Caledonian and adjacent waters with descriptions of 56 new species

Enrique MACPHERSON

Instituto de Cieneias del Mar. CSIC
Paseo Joan de Borbós s/n
08039 Barcelona. Spain

Abstract

A large collection of species of the genus Munida has been examined and found to contain 56 tundescribed species. The specinens examined were caught mainly off New Caledonia, Chesterfield Islands, Loyalty lslands, Matthew and Hunter lslands. Several samples from Kiribati, the Philippines and lndonesia have also been included. The specimens were collected between 6 and 2049 m . Some specics previously known in the area (M. gracilis, M. haswelli, M. microps, M spinicordata and M. tuberculata) have been illustrated. These results point up the high diversity of this genus in the region and the importance of several characters in species identification (e.g., size and number of lateral spines on the carapace, ornamentation of the thoracic sternitcs, size of antennular and antennal spines, colour pattern).

RÉSUMÉ

Crustacea Decapoda: Le genre M unida Leach, 1820 (Galatheidae) dans les eaux néo-calédoniennes et avoisinantes. Description de 56 espéces nouvelles.

Une collection comprenant 76 espèces dn genre Munida dont 56 sont nouvelles, récoltée principalement autour de la Nouvelle-Calédonie, les îles Cuesterfield, Loyauté. Matthew et Hunter, entre 6 et 2049 m de profondeur, est étudiée ici. Outre les espéces nouvelles, on a illustré quelques espéces déjà connues de la région : M. gracilis, M. haswelli, M. microps, M. spinicordata et M. tuberculata, Cette étude montre la grande diversité du genre Munida dans la région et l'importance de certains caractères morphologiques pour l'identification des espéces (par exemple, la taille et le nombre des épines latérales de la carapace, l'ornementation des sternites thoraciques, la taille des épines antennulaires et antennaires, la coloration).

Macpherson, E., 1994. - Crustacea Decapoda: Studies on the genus Murida Leach, 1820 (Galatheidae) in New Caledonian and adjacent waters, with descriptions of 56 new species. In: A. CrosNER (ed.), Résultats des Campagnes Musorstom, Volume 12. Mém. Mus. natn. Hist. nat., 161: 421-569. Paris ISBN 2-85653-212-8.

INTRODUCTION

Relatively few studics exist on galatheid crustaccans in the Soulhwestern Pacific, and of those that do exist, only a smail number deal with the genus Minida. e.g., Miers (1874, 1884), Henderson (1885, 1888), Whitelegge (1900), Hale (1927, 1941), Healy \& Yaldwyn (1970), Haig (1973, 1974), Bab^ (1974, 1986a). Fourtecn species have been reported in the region, including : M. gregaria (Fabricius. 1793); M. japonica Slimpson, 1858; M. spinuifera Miers, 1884; M. gracilis Henderson, 1885; M. spinicordata Henderson, 1885; M. tuberculata Henderson, i285; M. incerta Henderson, 1888; M. normani Henderson, 1885; M. haswelli Henderson, 1885; M. militaris Henderson, 1885; M. microps Alcock, 1894; M. elegantissima de Man, 1902; M. chathanıensis Baba, 1974; and M. soelae Baba, 1986.

Since the carly 1980s a number of expeditions carried out off New Caledonia and in adjacent waters have projuced a large number of specimens of the genus Minida, resulting in the discovery of numerous new species. This material, 10gether with recent work by Baba (1988, 1990), Macpherson \& de Sain't Lauren'r (1991), Macpierson (1991, 1993), Tirmizi \& Javed (1992), and MACPherson \& Baba (1993) in the Pacific and Indian oceans, is indicative of the high diversily of this genus.

The present paper examines specimens collected off New Caledonia, Chesterficld 1slands, Loyalty 1slands and Mathew and Hunter 1stands (Riciefr De Forges, 1990), including some samples from the Philippines, Indonesia, Kiribati and some from adjacent waters (e.g., Fiji, Australia, New Zealand) for which there have been few additional drawings or iltustralions since the original descriptions. Material on species that have also been recorded in other areas 2.g., Philippines) has also been included in this paper. A key has been constructed, encompassing all the species present in the Southwestern Pacific, wilh the exception of M. gregaria and M. chathamensis, for which comparative material was unavaitable (for M. japonica sec MACPIIERSON \& BABA, 1993). However, these species are readity differentiable from the species considered herein. Three species collected in the area: M. inornata Henderson, 1885, M. sacksi Macpherson, 1993 and M. magıiantemulata Baba \& Türkay, 1992, have only been included in the key (see BabA \& TURKAY, 1992; MAcpherson. 1993; MACpherson \& Baba, 1993).

A number ol' workers (e.g., Chace, 1942; Zariquify Alvarez. 1952; RICE \& DE SAInt Laurent, 1985; Baba. 1988; Macpierson \& de Saint Laurent, 1991) have referred to the importance of certain characters in species identification (e.g.. number of lateral spines on the carapace. ornamentation of the thoracic slernites. corneal diameter, size of anjennular and antennal spines, colour pattern). This study also conlemplales the spinulation on the second abdominal segmenl. This character may present certain varialion, and specimens betonging to the same species may have no spines or up to 1-2 spines on cach side of the anterior ridge. So, species bearing spines along the entire anterior ridge may also include individuals that have spines onty on the sides. However, this character is extremely constant in the material collected off New Caledonia. Consequently, species were readily subdivided into 1wo groups on the basis of this character: (1) those with spines all along the anterior ridge of the second segment or in the centre of the segment; (2) those wilhout spines or bearing spines only along the sides of the anterior ridge. All closely relaled species can be differentiated by other characters as weil as by the spinulation on the abdomen. Therefore, because of its case of use, this character has been included in the key to the species. Given the variability referred to above, the key should be applied with caution to specimens from other areas.

The number of spines on the lateral margins of the carapace behind the cervical groove is constant and is very usefui in separating species. However, in cerlain of the species considered (c.g., M. baraugei) these spines were quite small, and it was difficult to tell whether four or five spines, the common numbers for the species in question, were present. In this paper species with tiny spinelets were assumed to have five spines.

As in previous papers (c.g., MACPHERSON \& BABA, 1993) and in order to avoid needless repetition in the descriptions, the definition of each species includes only the distinctive characters, on the assumption that most of the other characters will be readily apparent from the illustrations. Furthermore, the colour patterns of the different species are based upon colour slides.

Lastly, as reported previously by MACPHERSON \& DE SAINT LAURENT (1991), some species have one pair of male gonopods. while others have two pairs, which is suggestive of the existence of two separate genera. In the present paper bolh groups have been included in the genus Munida, togelher with two species with a deep orbit (Munida urizae and M. yame), that probably belong to another genus. In the light of the diversity of the genus Munida and of closely related genera (Paramunida and Bathymnida), an analysis of these genera is distinctly called for, with a view of establishing the relationships among them and the proper classification of some of certain lorms that have recently been described.

The types of the new species and other specimens are deposited in the coltections of the Muséun national d'Histoire naturelle de Pirris (MNHN), except for duplicales which each lime it was possible have been deposited in the colleclions of the National Muscum of Natural History in Washington (USNM). The other abbreviations for the inslitutions whose collections were used in this sludy are : The Natural History Muscum, London (BM) and the Zoological Laboratory, Kyushu University (ZLKU). The measuremenls given are the carapace length. excluding rostrum. The terminology used follows previous papers (see Zariquiti y Alvarez.. 1952; Macpherson \& DF SAINT Lauren't, 1991).

LIST OF SPECIES

M. abelloi sp. nov.
M. acanthas. sp. nov.
M. alonsoi sp. nov.
M. amblyles sp. nov.
M. andrewi sp. nov.
M. armilla sp. nov.
M. barangei sp. nov.
M. bellior Miyake \& Babis, 1967
M. brachytes sp. nov.
M. callirhoe sp. nov.
M. callista sp. nov.
M. clinala sp. nov.
M. cormila sp. nov.
M. distiza sp. nov.
M. eclepsis sp. nov.
M. elachia sp. nov.
M. elegantissima de Man. 1902
M. eminens Baba, 1988
M. erato sp. nov.
M. gordone sp. nov.
M. gracilis Henderson, 1885
M. guttata sp. nov.
M. haswelli Henderson, 1885
M. Iyalina sp. nov.
M. idyia sp. nov.
M. incerta Hendcrson, 1885
M. imornata Henderson, 1885 (*)
M. javieri sp. nov.
M. laurentae sp. nov.
M. leagora sp. nov.
M. leptitis sp. nov.
M. leptosyne sp. nov.
M. leviantemhata Baba, 1988
M. Ilneola sp. nov.
M. magniantenmiata Baba \& Türkay, 1992 (*)
M. marini sp. nov.
M. masi sp. nov.
M. microps Alcock, 1894
M. militar is Henderson. 1885
M. moliae S13, nov.
M. nornani Henderson, 1885
M. notata sp. nov.
M. ocyrhoe sp. nov,
M. oliwarae sp. nov.
M. pagesi sp. nov.
M. pomoporea sp. nov.
M. proto sp. nov.
M. psamathe sp. nov.
M. pseliophora sp. nov.
M. psy/la sp. nov.
M. rhodonia sp. nov.
M. rogeri sp. nov.
M. rosula sp. nov.
M. rufiantemmhata Baba, 1969
M. rancinata sp. nov.
M. sabatesae sp. nov.
M. sacksi Macpherson, 1993 (*)
M. sao sp. nov.
M. semoni Ortmann, 1894
M. soelae Baba. 1986
M. sphecia sp. nov.
M. spilota sp. nov.
M. spinicordata Henderson, 1885
M. squamosa Henderson. 1885
M. stia sp. nov.
M. stigmatica sp. nov.
M. taenia sp. nov.
M. thoe sp. nov.
M. tiresias sp. nov.
M. mberculata Henderson, 1885
${ }^{(*)}$ only included in the key.
M. tyche sp. nov.
M. typhle sp. nov.
M. urizae sp. nov.
M. yante sp. nov.
M. zebra sp. nov.

Mumida sp.

LIST OF STATIONS

The abbreviations of the gears used are : $\mathrm{DC}=$ Charcot dredge; $\mathrm{DW}=$ Waren dredge; $\mathrm{DE}=$ Epibenthic sledge; $\mathrm{CP}=$ Beam trawl; $\mathrm{CC}=$ Otter trawl (shrimps); $\mathrm{D}=$ Dredge .

R.V. "Vanban" (several cruises). New Caledonia and Loyalty Islands.

Station CB 34. - Loyalty 1sl., Sandal Bay, $05.03 .1977,400 \mathrm{~m}:$ M. callirrhoe, M. eminens, M. squamosa.
Station CB 37. - 400 m : M. callista.
Station CB 79. - 400 m : M. erato.
Station without $n^{2} .-22^{\circ} 49^{\prime} \mathrm{S}, 167^{\circ} 12^{\prime} \mathrm{E}, 390 \mathrm{~m}:$ M. zebra.
Station without $n^{9} .-2^{\circ} 54^{\prime} \mathrm{S}, 167^{\circ} 12^{\prime} \mathrm{E}, 395-410 \mathrm{~m}: M$. zebra.
Station without $\mathrm{n}^{2} .-13.04 .1978$, 11e des Pins. $400 \mathrm{~m}:$ M. sphecia.
Station CB 105. - 13.04.1978, $22^{\circ} 48^{\prime} \mathrm{S}, 167^{\circ} 09 \mathrm{E} .360 \mathrm{~m}:$ M. sphecia.
Station D 3. - 23-28.05.1978. $22^{\circ} 17^{\prime} \mathrm{S}, 167^{\circ} 12^{\prime} \mathrm{E}, 390 \mathrm{~m}:$ M. callirhoe.
Station D 4. - 23-28.05.1978, $22^{\circ} 17^{\prime} \mathrm{S}, 167^{\circ} 13^{\prime} \mathrm{E}, 400 \mathrm{~m}:$ M. callirrhoe, M. sphecia. Station without n°. $-06.06 .1979,22^{\circ} 33.2^{\prime} \mathrm{S}, 166^{\circ} 25^{\prime} \mathrm{E}, 290-350 \mathrm{~m}: M$. squamosa.
Station without $\mathrm{n}^{\mathrm{o}} .-06.06 .1979,22^{\circ} 32.3^{\prime} \mathrm{S}, 166^{\circ} 25.8^{\circ} \mathrm{E}, 350-420 \mathrm{~m}: \mathrm{M}$. levianteruata.

Lagon. New Caledonia.

Station 190. - 19.09.1984, $22^{\circ} 02^{\prime} \mathrm{S}$. $165^{\circ} 57^{\prime} \mathrm{E}, 135-150 \mathrm{~m}$: M. tyche.
Station 342. - 28.11.1984, $22^{\circ} 51^{\prime} \mathrm{S}, 166^{\circ} 47^{\prime} \mathrm{E}, 55 \mathrm{~m}:$ M. climata.
Station 364. - 29.11.1984, 22 $2^{\circ} 41^{\prime} \mathrm{S}, 167^{\circ} 00^{\prime} \mathrm{E}, 49 \mathrm{~m}$: M. clinata.
Station 370. - $30.11 .1984,22^{\circ} 38^{\circ} \mathrm{S}, 167^{\circ} 06^{\prime} \mathrm{E}, 127 \mathrm{~m}: M$. tyche.
Station 378. - 21.01.1985, 22 $2^{\circ} 40^{\prime} \mathrm{S}, 167^{\circ} 11^{\prime} \mathrm{E}, 70-72 \mathrm{~m}: \mathrm{M}$. clinata.
Station 387. - 22.01.1985, 22 ${ }^{\circ} 39^{\prime} \mathrm{S}, 167^{\circ} 07^{\prime} \mathrm{E}, 318 \mathrm{~m}:$ M. notata.
Station 391. - 22.01.1985, 22 $2^{\circ} 28^{\prime} \mathrm{S}, 167^{\circ} 13^{\prime} \mathrm{E}, 65 \mathrm{~m}: M$. clinata.
Station 392. - 22.01.1985, $22^{\circ} 48.2^{\prime} \mathrm{S}, 167^{\circ} 02.3^{\prime} \mathrm{E}, 80 \mathrm{~m}$: M. clinala.
Station 418. - 24.01.1985, $22^{\circ} 42^{\prime} \mathrm{S}, 167^{\circ} 11^{\prime} \mathrm{E}, 318 \mathrm{~m}:$ M. notata.
Station 433. - $25.02 .1985,18^{\circ} 066^{\mathrm{S}}, 162^{\circ} 52^{\prime} \mathrm{E}, 40-67 \mathrm{~m}:$ M. olivarae.
Station 493. - $03.03 .1985,19^{\circ} 01.6^{\prime} \mathrm{S}, 163^{\circ} 08.8^{\prime} \mathrm{E}, 500-535 \mathrm{~m}:$ M. squamosa.
Station 495. - 03.03.1985, $19^{\circ} 04^{\prime} \mathrm{S}, 163^{\circ} 06^{\prime} \mathrm{E}, 80 \mathrm{~m}:$ M. olivarae.
Station 537, - 06.03.1985, $19^{\circ} 077^{\prime} \mathrm{S}, 163^{\circ} 22^{\prime} \mathrm{E}, 200 \mathrm{~m}:$ M. sao.
Station 538. - 06.03.198.5, $19^{\circ} 077^{\prime} \mathrm{S}, 163^{\circ} 21^{\prime} \mathrm{E}, 195 \mathrm{~m}:$ M. sao.
Station 539. - 06.03.1985, $19^{\circ} 05^{\prime} \mathrm{S}, 163^{\circ} 17^{\prime} \mathrm{E}, 240 \mathrm{~m}:$ M. sao.
Station 583. - 18.07.1985, $22^{\circ} 45^{\prime} \mathrm{S}, 167^{\circ} 29^{\prime} \mathrm{E}, 44 \mathrm{~m}:$ M. clinata, M. sao.
Station 640. - 07.08.1986. $21^{\circ} 54.8^{\prime} \mathrm{S}, 166^{\circ} 45.8^{\prime} \mathrm{E}, 50-80 \mathrm{~m}: \mathrm{M}$. elegantissima.
Station 836. - $11.01 .1987,20^{\circ} 46.4^{\prime} \mathrm{S} 165^{\circ} 15.7^{\prime} \mathrm{E}, 57 \mathrm{~m}$: M. clinata.
Siation 837. - 11.01.1987, $20^{\circ} 45^{\circ} \mathrm{S}, 165^{\circ} 13.9 \mathrm{E}, 28-36 \mathrm{~m}$: M. clinata.
Station 904. - $26.04 .1988,21^{\circ} 00.8^{\prime} \mathrm{S}, 164^{\circ} 36^{\prime} \mathrm{E}, 250-300 \mathrm{na}:$ M. pagesi.
Station 933. - 27.04.1988, $22^{\circ} 44.9^{\prime} \mathrm{S} .164^{\circ} 14.9^{\prime} \mathrm{E}, 90-100 \mathrm{~m}$: M. clinata.
Station 937. - 29.04. 1988, $20^{\circ} 39^{\prime} \mathrm{S}, 164^{\circ} 15.4^{\prime} \mathrm{E}, 50-55 \mathrm{~m}$: M. clinata.
Station 993. - 02.05.1988, $20^{\circ} 15^{\prime} \mathrm{S}, 163^{\circ} 52.8^{\circ} \mathrm{E}, 375-400 \mathrm{~m}:$ M. pagesi.
Station 1062. - 05.05.1988, $20^{\circ} 14.9^{\prime} \mathrm{S}, 163^{\circ} 53^{\prime} \mathrm{E}, 300-320 \mathrm{~m}:$ M. leviantermata.
Station 1140. - 27.10.1989, 19 $24.3^{\prime} \mathrm{S} .163^{\circ} 44.2^{\prime} \mathrm{E}, 44 \mathrm{~m}:$ M. clinata.
Station 1146. - 28.10.1989, 19 0 08.3'S, $163^{\circ} 30.9^{\prime} \mathrm{E}, 185 \mathrm{~m}:$ M. sao, M. tyche.

Station 1147. - 28.10.1989, $19^{\circ} 07^{\prime} \mathrm{S}, 163^{\circ} 30.4^{\prime} \mathrm{E}, 210 \mathrm{~m}:$ M. sao.
Station 1148. - 28.10.1989, $19^{\circ} 06.5^{\mathrm{S}} \mathrm{S}, 163^{\circ} 30.1^{\prime} \mathrm{E}, 220 \mathrm{~m}:$ M. sao.
Station 1152. - 29.10.1989, $18^{\circ} 58^{\prime} \mathrm{S}, 163^{\circ} 23.9^{\prime} \mathrm{E}, 335 \mathrm{~m} ; M$. notata.
Station 1153. - $29.02 .1989,18^{\circ} 58.4^{\circ} \mathrm{S}, 163^{\circ} 23.0^{\prime} \mathrm{E}, 330 \mathrm{~m}: M$. wizae.

Blocal. New Caledonia.

Stalion DW 8. - 12.08.1985. $20^{\circ} 34.35^{\prime} \mathrm{S}, 166^{\circ} 53.90^{\prime} \mathrm{E}, 435 \mathrm{~m}: M$. armilla, M. nufiantennulata, M. thoe, M. tuberculata.

Station CP 26. - 28.08.1985, $22^{\circ} 39.66^{\prime} \mathrm{S}, 166^{\circ} 27.41^{\prime} \mathrm{E}, 1618 \mathrm{~m}: M$. titesias.
Station CP 30. $-29.08 .1985,23^{\circ} 08.44^{\prime} \mathrm{S}, 166^{\circ} 40.83^{\prime} \mathrm{E}, 1140 \mathrm{~m}: M$. tiresias.
Station CP 31. - $29.08 .1985,23^{\circ} 07.26^{\circ} \mathrm{S}, 166^{\circ} 50.45^{\prime} \mathrm{E}, 850 \mathrm{~m}:$ M. eminens.
Station CP 32. - $29.08 .1985,23^{\circ} 06.98^{\circ} \mathrm{S}, 166^{\circ} 51.20 \mathrm{E}, 825 \mathrm{~m}:$ M. eminens, M. rosula.
Station DW 33. - $29.08 .1985,23^{\circ} 09.71^{\prime} \mathrm{S}, 167^{\circ} 10.27^{\prime} \mathrm{E}, 675 \mathrm{~m}:$ M. rosula.
Station DW 36. - 29.08.1985, $23^{\circ} 08.64^{\prime} \mathrm{S}, 167^{\circ} 10.99^{\prime} \mathrm{E}, 650 \mathrm{~m}: \mathrm{M}$. alonsoi.
Station DW 38. - 30.08.1985, $22^{\circ} 59.74^{\prime} \mathrm{S}, 167^{\circ} 15.31^{\prime} \mathrm{E}, 360 \mathrm{~m}:$ M. acantha, M. sphecia, M. stia.
Station CP 40. - $30.08 .1985,22^{\circ} 55.32^{\prime} \mathrm{S}, 167^{\circ} 23.30^{\prime} \mathrm{E}, 650 \mathrm{~m} ; M$. incerta.
Station CP 42. - $30.08 .1985,22^{\circ} 45.14^{\prime} \mathrm{S}, 167^{\circ} 12.12^{\prime} \mathrm{E}, 380 \mathrm{~m}: M$. callirrhoe.
Station DW 44. - $30.08 .1985,22^{\circ} 47.30^{\prime} \mathrm{S}, 167^{\circ} 14.30^{\prime} \mathrm{E}, 440 \mathrm{~m}: M$. stia.
Station CP 45. - 30.08.1985, $22^{\circ} 47.34^{\prime} \mathrm{S}, 167^{\circ} 14.80^{\prime} \mathrm{E}, 430 \mathrm{~m}:$ M. laurentae, M. sphecia, M. squamosa, M. zebra.

Station DW 46. - 30.08.1985, $22^{\circ} 53.05^{\prime} \mathrm{S}, 167^{\circ} 17.08^{\prime} \mathrm{E}, 570 \mathrm{~m}:$ M. alonsoi, M. amblytes, M. laurentae.
Stalion CP 47. - $30.08 .1985,22^{\circ} 53.02^{\prime} \mathrm{S}, 167^{\circ} 16.77^{\prime} \mathrm{E}, 550 \mathrm{~m}: M$. laurentae.
Station CP 52. - $31.08 .1985,23^{\circ} 05.79^{\prime} \mathrm{S}, 167^{\circ} 46.54^{\prime} \mathrm{E}, 600 \mathrm{~m}: M$. antblytes, M. incerta, M. lawentae.
Station CP 54. - $01.09 .1985,23^{\circ} 10.30^{\prime} \mathrm{S}, 167^{\circ} 42.98^{\prime} \mathrm{E}, 1000 \mathrm{~m}: M$ amblytes.
Station CP 61. - 02.09.1985, $24^{\circ} 11.67^{\prime} \mathrm{S}, 167^{\circ} 31.37^{\prime} \mathrm{E}, 1070 \mathrm{~m}:$ M. microps.
Station CP 62. - 02.09.1985, $24^{\circ} 19.06^{\prime} \mathrm{S}, 167^{\circ} 48.65^{\prime} \mathrm{E}, 1395 \mathrm{~m}:$ M. typhle.
Station DW 65. - 03.09.1985, $24^{\circ} 47.90^{\prime} \mathrm{S}, 168^{\circ} 09.09^{\prime} \mathrm{E}, 275 \mathrm{~m}$: M. rogeri.
Station DW 66. $-03.09 .1985,24^{\circ} 55.43^{\prime} \mathrm{S}, 168^{\circ} 21.67^{\prime} \mathrm{E}, 515 \mathrm{~m}: M$. lau'enae, M. nfiantennulata, M. stia, M. zebra.

Station CP 67. - 03.09.1985, $24^{\circ} 55.44^{\prime} \mathrm{S}, 168^{\circ} 21.55^{\prime} \mathrm{E}, 500 \mathrm{~m}:$ M. armilla, M. callista, M. elachia, M. laurentae, M. leagora, M. marini, M. ocythoe, M. psylla, M. thoe, M. zebra.

Station CP 68. - 03.09.1985, $24^{\circ} 00.30^{\prime} \mathrm{S}, 168^{\circ} 07.03^{\prime} \mathrm{E}, 1430 \mathrm{~m}:$ M. tiresias, M. typhle.
Station CP 75. - 04.09.1985, $22^{\circ} 18.65^{\top} \mathrm{S}, 167^{\circ} 23.30^{\prime} \mathrm{E}, 825-860 \mathrm{~m}:$ M. eminens, M. rosula.
Station DW 77. - 05.09.1985, $22^{\circ} 15.32^{\prime} \mathrm{S}, 167^{\circ} 15.40 \mathrm{E}, 440 \mathrm{~m}: M$. leagora, M. squamosa.
Station CP 78. - 05.09.1985, $22^{\circ} 16.28^{\prime} \mathrm{S}, 167^{\circ} 14.86^{\prime} \mathrm{E}, 445 \mathrm{~m}: M$. callirthoe, M. callista, M. leagora, M. squamosa.

Station DW 81. - $05.09 .1985,20^{\circ} 29.31^{\prime} \mathrm{S}, 166^{\circ} 46.56^{\prime} \mathrm{E}, 430 \mathrm{~m}:$ M. laurentac.
Station DW 82. - $06.09 .1985,20^{\circ} 30.65^{\prime} \mathrm{S}, 166^{\circ} 50.30^{\prime} \mathrm{E} .440 \mathrm{~m}: M$. callista, M. leagora, M. leptitis, M. rufiantennulata.

Station DW 83. - 06.09.1985, $20^{\circ} 35.07$ 'S, $166^{\circ} 53.99^{\prime} \mathrm{E}, 460 \mathrm{~m}: M$. thoe.
Station CP 84. - 06.09.1985, $20^{\circ} 43.49^{\prime} \mathrm{S}, 167^{\circ} 00.27^{\prime} \mathrm{E}, 150-210 \mathrm{~m}:$ M. distiza, M. notata, M. tyche.
Station CP 105. - 08.09.1985, $21^{\circ} 30.71^{\prime} \mathrm{S}, 166^{\circ} 21.72^{\top} \mathrm{E}, 335 \mathrm{~m}: M$. callirhoe, M. noliae.
Station CP 108. - 09.09.1985, $22^{\circ} 02,55^{\prime} \mathrm{S}, 167^{\circ} 05.68^{\prime} \mathrm{E}, 335 \mathrm{~m}: M$. callirrhoe, M. notata, M. pagesi, M. semoni.

Station CP 109. - 09.09.1985, $22^{\circ} 10.03^{\prime} \mathrm{S}, 167^{\circ} 15.22^{\prime} \mathrm{E}, 495 \mathrm{~m}:$ M. incerta, M. leviantennata, M. pagesi, M. squamosa.

Station CP 110. - 09.09.1985, $22^{\circ} 12.38^{\prime} \mathrm{S} .167^{\circ} 06.43^{\prime} \mathrm{E}, 275 \mathrm{~m}:$ M. notata, M. sao.

MUSORSTOM 4. New Caledonia.

Station CP 148. - 14.09.1985, 19²3.40'S, $163^{\circ} 31.90^{\prime} \mathrm{E}, 59 \mathrm{~m}:$ M. acantha, M. notata, M. sphecia.
Station DW 149. - 14.09.1985, $19^{\circ} 07.60^{\prime} \mathrm{S}, 163^{\circ} 22.7^{\prime} \mathrm{E}, 165 \mathrm{~m}: \mathrm{M}$. sao.
Station DW 150. - 14.09.1985. 19 $9^{\circ} 07.5^{\prime} \mathrm{S}, 163^{\circ} 22.1^{\prime} \mathrm{E}, 110 \mathrm{~m}$: M. chinata.
Station DW 151. - 14.09.1985, $19^{\circ} 07.0^{\prime} \mathrm{S}, 163^{\circ} 22.0^{\prime} \mathrm{E}, 200 \mathrm{~m}:$ M. sao.
Station CP 152. - $14.09 .1985,19^{\circ} 04.7^{\prime} \mathrm{S}, 163^{\circ} 21.6^{\prime} \mathrm{E}, 228 \mathrm{~m}:$ M. sao, M. tyche.
Station CP 153. - 14.09.1985, $19^{\circ} 04.2^{\prime} \mathrm{S}, 163^{\circ} 21.2^{\mathrm{L}} \mathrm{E}, 235 \mathrm{~m}:$. . tyche.

Station CP 155.-15.09.1985, 18 ${ }^{\circ} 52.8^{\prime} \mathrm{S}, 163^{\circ} 19.5^{\prime} \mathrm{E}, 500-570 \mathrm{~m}:$ M. laurentae, M. moliae, M. sabatesae
Station DW 156. - $15.09 .1985,18^{\circ} 54^{\prime} \mathrm{S} .163^{\circ} 18.8^{\prime} \mathrm{E}, 530 \mathrm{~m}:$ M. incerta, M. moliae, M. thoe.
Station CP 158. - 15.09.1985, $18^{\circ} 49.3^{\prime} \mathrm{S}, 163^{\circ} 15.0 \mathrm{E}^{\circ} 620 \mathrm{~m}$: M. armilla, M. incerta.
Station DW 159. - 15.09.1985, 18 $8^{\circ} 45.9^{\prime} \mathrm{S}, 163^{\circ} 15.6^{\prime} \mathrm{E} .600 \mathrm{~m}:$ M. incerta, M. sp.
Station DW 162. - 16.09.1985, 18 $8^{\circ} 35.0^{\prime} \mathrm{S}, 163^{\circ} 10.3^{\prime} \mathrm{E}, 535 \mathrm{~m}$: M. moliae, M. sabatesae.
Station DW 16.3. - 16.09.198.5, $18^{\circ} 33.8^{\prime} \mathrm{S}, 163^{\circ} 11.5^{\prime} \mathrm{E}, 350 \mathrm{~m}$: M. acantha.
Station DW 164.-16.09.1985, 18 ${ }^{\circ} 33.20^{\prime} \mathrm{S}, 163^{\circ} 13^{\prime} \mathrm{E}, 250 \mathrm{~m}$: M. acanha.
Station DW 167.-16.09.1985, $18^{\circ} 35.8^{\prime} \mathrm{S}, 163^{\circ} 06.4^{\prime} \mathrm{E}, 575 \mathrm{~m}$: M. moliae, M. sabatesae.
Station DC 168.-16.09.1985, 18 $8^{\circ} 48.20^{\prime} \mathrm{S}, 163^{\circ} 10.80^{\circ} \mathrm{E}, 720 \mathrm{~m}:$ M. militaris.
Station CP 169. - 17.09.1985, 18 ${ }^{\circ} 54.03^{\prime} \mathrm{S}, 163^{\circ} 11.2^{\prime} \mathrm{E}, 600 \mathrm{~m}$; M. incerta.
Station CP 170. - 17.09.1985, 18 ${ }^{\circ} 57.0^{\prime} \mathrm{S}, 163^{\circ} 12.6^{\prime} \mathrm{E}, 485 \mathrm{~m}:$ M. callithoe, M. idyia, M. incerta, M. moliae, M. sqnamosa.

Station CP 172. - 17.09.1985, $19^{\circ} 01.20^{\prime} \mathrm{S}, 163^{\circ} 20^{\circ} \mathrm{E}, 275-330 \mathrm{~m}$: M. notata.
Station CC 173. - 17.09.1985, 1902.5'S, 163 $18.8^{\circ} \mathrm{E}, 250-290 \mathrm{~m}$: M. masi.
Station CP 178. - 18.09.1985. 18 ${ }^{\circ} 56.3^{\prime} \mathrm{S}, 163^{\circ} 12.9^{\prime} \mathrm{E}, 520 \mathrm{~m}:$ M. incerta, M. notata.
Station CP 179. - 18.09.1985, 18 $8^{\circ} 56.6^{\prime} \mathrm{S}, 163^{\circ} 13.7^{\prime} \mathrm{E}, 480 \mathrm{~m}:$ M. incerta, M. squamosa.
Station CP 180. - 18.09.198.5, 18 $8^{\circ} 56.8^{\prime} \mathrm{S}$. $163^{\circ} 17.7^{\prime} \mathrm{E}, 450 \mathrm{~m}: M$. callirhoe, M. leagora, M. moliae, M. sabatesae, M. squamosa.

Station DW 182. - 18.09.1985, $18^{\circ} 59.3^{\prime} \mathrm{S}, 163^{\circ} 24^{\prime} \mathrm{E}, 310 \mathrm{~m}:$ M. stigmatica.
Station DW 183. - 18.09.1985, 19 $9^{\circ} 01.8^{\prime} \mathrm{S}, 163^{\circ} 25.8^{\prime} \mathrm{E}, 280 \mathrm{~m}$; M. acamha, M. guthaa, M. javieri, M. notala.
Station DW 184. - 18.09.1985, 19 $04^{\circ} \mathrm{S}, 163^{\circ} 27 \mathrm{E}, 260 \mathrm{~m}:$ M. gmtata, M. notata, M. sao.
Station DW 186. - 19.09.1985, 1907.2'S, $163^{\circ} 29.7^{\prime} \mathrm{E}, 205 \mathrm{~m}$: M. sao, M. tyche.
Station DW 187. - 19.09.1985. 19 ${ }^{\circ} 08.3^{\prime} \mathrm{S}$. $163^{\circ} 29.3 \mathrm{E}, 65-120 \mathrm{~m}: M$. sao.
Station CP 189. - 19.09.1985, 19 07.5'S. $163^{\circ} 29^{\prime} \mathrm{E}, 215 \mathrm{~m}$: M. sao.
Station CP 190. - 19.09.198.5, 1906.3'S, $163^{\circ} 29.5^{\prime} \mathrm{E} .215 \mathrm{~m}$: M. tyche.
Station CP 191. - 19.09.1985. 19 02.4'S, 163²8.3'E. 255 m : M. gutata.
Station CP 192. - 19,09.1985. $18^{\circ} 59.3^{\prime} \mathrm{S}, 163^{\circ} 25^{\prime} \mathrm{E}, 320 \mathrm{mt}$: M. runcinata.
Station CP 193. - 19,09.1985, 18056.3'S, 163º23.2'E, $430 \mathrm{~m}:$ M. acantha, M. sabatesae, M. sphecia, M. zebra.
Station CP 194. - 19.09.1985, 18 $8^{\circ} 52.8^{\prime} \mathrm{S}, 163^{\circ} 21.7^{\prime} \mathrm{E}, 550 \mathrm{~m}:$ M. incerta, M. Iaurentae, M. moliae, M. ocyrhoe, M. sabatesae, M. thoe.

Station CP 195. - 19.09.1985, 18 $8^{\circ} 54.8^{\prime} \mathrm{S}, 163^{\circ} 22.2^{\prime} \mathrm{E}, 470 \mathrm{~m}:$ M. callirrloe, M. lanrentae, M. moliae, M. runcinata, M. sabatesae, M. sqnamosa, M. thoe.

Station DW 196. - 20.09.1985, $18^{\circ} 55.0^{\prime} \mathrm{S}, 163^{\circ} 23.7^{\prime} \mathrm{E}, 460 \mathrm{~m}$: M. acantha, M. moliae, M. sabatesue.
Station DW 197. - 20.09.1985, 18 $8^{\circ} 51.3^{\prime} \mathrm{S} .163^{\circ} 21.0^{\circ} \mathrm{E}, 560 \mathrm{~m}:$ M. incerta, M. zebra.
Station CP 198. - 20.09.1985, $18^{\circ} 49.4^{\prime} \mathrm{S}, 163^{\circ} 18.8^{\prime} \mathrm{E}, 590 \mathrm{~m}: M$. andrewi, M. incerta, M. normani, M. ocyrloe, M. thodomia, M. rosula.

Station CP 199. - 20.09.1985, 18 $8^{\circ} 50.0^{\prime} \mathrm{S} .163^{\circ} 14.5^{\prime} \mathrm{E}, 600 \mathrm{~m}:$ M. incerta.
Station CP 200. - 20.09.1985, $18^{\circ} 53.8^{\prime} \mathrm{S}, 163^{\circ} 14.1^{\prime} \mathrm{E}, 54.5 \mathrm{~m}:$ M. incerta, M. sp.
Station CC 201. - 20.09.198.5, 18 $8^{\circ} 55.8^{\prime} \mathrm{S}, 163^{\circ} 13,8^{\prime} \mathrm{E}, 500 \mathrm{~m}:$ M. incerta, M. squamosa.
Station CC 202. - 20.09.1985, $18^{\circ} 58.0^{\prime} \mathrm{S}, 163^{\circ} 10.5^{\prime} \mathrm{E}, 580 \mathrm{~m}:$ M. incerta, M. rhodonia, M. squamosa, M. sp.
Station DW 204. - 27.09.1985, 22 ${ }^{\circ} 37.0^{\prime}$ S, $167^{\circ} 05.7^{\prime} \mathrm{E}, 120 \mathrm{~m}:$ M. clinata.
Station DW 207. - 28.09.1985, 22 ${ }^{\circ} 39.0^{\prime}$ 'S, $167^{\circ} 07.4^{\prime} \mathrm{E} .220-235 \mathrm{~m}:$ M. spilota, M. tyche.
Station DW 210. - 28.09.1985. 22 $2^{\circ} 43.7^{\prime} \mathrm{S}, 167^{\circ} 09.3^{\prime} \mathrm{E}, 340-345 \mathrm{~m}:$ M. notata.
Station DW 212. - 28.09.1985. 22 $2^{\circ} 47.4^{\prime} \mathrm{S}, 167^{\circ} 10,5^{\prime} \mathrm{E}, 375-380 \mathrm{~m}: \mathrm{M}$. sphecia, M. taenia.
Station CP 213. - 28.09.1985, 22 ${ }^{\circ} 51.3^{\prime} \mathrm{S}, 167^{\circ} 12.0^{\prime} \mathrm{E}, 405-430 \mathrm{~m}$: M. sabatesae, M. sphecia, M. zebra.
Station CP 214. - 28.09.1985. 22 ${ }^{\circ} 53.8^{\prime} \mathrm{S}, 167^{\circ} 13.9^{\prime} \mathrm{E}, 425-440 \mathrm{~m}$: M. sphecia, M. zebra.
Station CP 215, - 28.09.1985, $22^{\circ} 55.7^{\prime} \mathrm{S}, 167^{\circ} 17.0^{\prime} \mathrm{E} .485-520 \mathrm{~m}:$ M. lauremae, M. ocyrhoe, M. spluecia,
M. zebra,
Station CP 216. - 29.09.1985. $22^{\circ} 59.5^{\prime} \mathrm{S}, 167^{\circ} 22.0^{\prime} \mathrm{E}, 490-515 \mathrm{~m}:$ M. alonsoi, M. ocyrhoe, M. thoe.
Station DW 220. - 29.09.1985, $22^{\circ} 58.5^{\prime} \mathrm{S}, 167^{\circ} 38.3^{\prime} \mathrm{E}, 505-550 \mathrm{~m}: \mathrm{M}$. alousoi.
Station DW 221. - 29.09.1985. 22 ${ }^{\circ} 58.6^{\prime}$ S, 167 $36.8^{\prime} \mathrm{E}, 535-560 \mathrm{~m}:$ M. incerla, M. sp .
Station DW 222 - 30.09 .
Station DW 222. - $30.09 .1985,22^{\circ} 57.6^{\prime}$ 'S. $167^{\circ} 33.0^{\prime} \mathrm{E}, 410-440 \mathrm{~m}:$ M. barangei, M. sphecia, M. zebra.
Station DW 223. - $30.09 .198,5,22^{\circ} 57.0^{\prime}$ SS $167^{\circ} 300^{\prime} \mathrm{E}, 545-560 \mathrm{~m}:$ M. iucerta
Station DW 223. - $30.09 .198 .5,22^{\circ} 57.0^{\prime} \mathrm{S}, 167^{\circ} 30.0^{\prime} \mathrm{E} .545-560 \mathrm{~m}: \mathrm{M}$. incerta.
Station DW 226. - 30.09.198.5, 22 $2^{\circ} 47.2^{\prime} \mathrm{S}, 167^{\circ} 21.6^{\prime} \mathrm{E}, 395 \mathrm{~m}:$ M. notata, M. sphecia.
Station DW 227. - 30.09.1985, $22^{\circ} 46.0^{\prime} \mathrm{S}$, $167^{\circ} 20.0^{\prime} \mathrm{E}, 320 \mathrm{~m}:$ M. guttata, M. notata, M. taenia.

Station DW 228. - 30.09.1985, $22^{\circ} 47^{\prime} \mathrm{S}$, $167^{\circ} 18.2^{\prime} \mathrm{E}, 420 \mathrm{~m}:$ M. zebra.
Station DW 229. - 30.09.1985, $22^{\circ} 51.6^{\prime} \mathrm{S}, 167^{\circ} 13.5^{\prime} \mathrm{E}, 445-460 \mathrm{~m}$: M. squamosa.
Station DW 234. - 02.10.1985, $22^{\circ} 15.5^{\prime}$ S, $167^{\circ} 08.3^{\prime} \mathrm{E}, 350-365 \mathrm{~m}:$ M. notata, M. taemia.
Station DC 235. - 02.10.1985, $22^{\circ} 13.0^{\circ} \mathrm{S}, 167^{\circ} 12.0^{\prime} \mathrm{E}, 405-415 \mathrm{~m}$: M. callirrhoe, M. notata.
Station CP 236. - 02.10.1985, $22^{\circ} 11.3^{\prime} \mathrm{S}$. $167^{\circ} 15,0^{\circ} \mathrm{E}, 495-550 \mathrm{~m}:$ M. incerta, M. levianemata, M. pagesi, M. rufiantemulata, M. squamosa.

Station CP 238. - 02.10.1985, $22^{\circ} 13.0^{\prime} \mathrm{S}, 167^{\circ} \mathrm{t} 4.0^{\prime} \mathrm{E}, 500-510 \mathrm{~m}:$ M. inceria, M. leagora, M. ocyrhoe, M. rhodonia, M. rufiantenmiata, M. sp.

Station CP 239. - 02.10.1985, $22^{\circ} 14.8^{\prime} \mathrm{S}, 167^{\circ} 15.7^{\prime} \mathrm{E}, 470-475 \mathrm{~m}:$ M. incerta, M. leagora, M. leviamemata, M. pagesi, M. squamosa, M. sp.

Station CP 240 . - 02,10.1985, $22^{\circ} 16.5^{\prime} \mathrm{S}, 167^{\circ} 16.5^{\prime} \mathrm{E}, 475-500 \mathrm{~m}:$ M. barangei, M. incerta, M. ocyrhoe, M. rhodonia.

Station CP 241. - 03.10.1985, $22^{\circ} 09.0^{\prime} \mathrm{S}, 167^{\circ} 12.2^{\prime} \mathrm{E}, 470-480 \mathrm{~m}:$ M. incerta, M. leviantemata, M. pagesi, M. sp.

Station CP 242. - 03.10.1985, $22^{\circ} 05.8^{\prime} \mathrm{S}, 167^{\circ} 10.3^{\prime} \mathrm{E}, 500-550 \mathrm{~m}:$ M. incerta, M. pagesi, M. psamathe, M. sp . Station CP 243 . - 03.10.1985, $22^{\circ} 02.8^{\prime} \mathrm{S}, 167^{\circ} 07.7^{\prime} \mathrm{E}, 435-450 \mathrm{~m}:$ M. leviamemata, M. squamosa.
Station CC 245 . - 03.10.1985, $22^{\circ} 07.0^{\prime} \mathrm{S}, 167^{\circ} \mathrm{t} 1.0^{\prime} \mathrm{E}, 415-435 \mathrm{~m}:$ M. narim.
Station CC 246 - - 03.10.1985, $22^{\circ} 08.5^{\prime} \mathrm{S}, 167^{\circ} 11.5^{\prime} \mathrm{E}, 410-420 \mathrm{~m}$: M. callirhoe, M. leviantemata, M. pagesi. Station CC 247. - 04.10.1985, $22^{\circ} 09.0^{\prime} \mathrm{S}$, $\mathrm{t} 67^{\circ} 13.3^{\prime} \mathrm{E}, 435-460 \mathrm{~m}: \mathrm{M}$. callirrhoe, M. incerta, M. leviamemata, M. pagesi, M. squamosa.

Station CC 248 . - $04.10 .198 .5,22^{\circ} 09.5^{\prime} \mathrm{S}, 167^{\circ} 10.0^{\prime} \mathrm{E}, 380-38.5 \mathrm{~m}$: M. callirthoe, M. runcinata.

Smib 1, New Caledonia.

Station DW 2. - 05.02.1986, $22^{\circ} 51.9^{\prime} \mathrm{S}, 167^{\circ} 13^{\prime} \mathrm{E}, 415 \mathrm{~m}: M$. sphecia.
Station DW 7. - 06.02.1986, $22^{\circ} 55.5^{\prime} \mathrm{S}, 167^{\circ} 15.9^{\prime} \mathrm{E}, 500 \mathrm{~m}:$ M. lauremae, M. zebra.
Station DW 9. - 06.02.1986, $22^{\circ} 55^{\prime} \mathrm{S}, 167^{\circ} 14.7^{\prime} \mathrm{E}, 450 \mathrm{~m}:$ M. sphecia, M. zebra.
Station DW 10. - 07.02.1986, $22^{\circ} 55^{\prime} \mathrm{S}, 167^{\circ} 12 \mathrm{E}, 395-410 \mathrm{~m}$: M. sphecia.

Smib 2. New Caledonia.

Station DW 1. - 17.09.1986, $22^{\circ} 52.7^{\prime} \mathrm{S}$, $167^{\circ} 12.6^{\prime} \mathrm{E}, 444 \mathrm{~m}:$ M. zebra.
Station DW 2. - 17.09.1986, 22 $2^{\circ} 54.9^{\prime} \mathrm{S}, 167^{\circ} 14.2^{\prime} \mathrm{E}, 448 \mathrm{~m}:$ M. zebra.
Station DW 3. - 17.09.1986, 22 $2^{\circ} 56.0^{\prime} \mathrm{S}, 167^{\circ} 14.8^{\prime} \mathrm{E}, 428 \mathrm{~m}:$ M. sphecia, M. zebra.
Station DW 5. - 17.09.1986, 22 $2^{\circ} 56.3^{\prime} \mathrm{S}, 167^{\circ} 14.4^{\prime} \mathrm{E} .410 \mathrm{~m}:$ M. sphecia, M. zebra.
Station DW 6. - 17.09.1986, $22^{\circ} 56.2^{\prime} \mathrm{S}, 167^{\circ} 15.9^{\prime} \mathrm{E}, 460 \mathrm{~m}:$ M. acamha, M. sphecia, M. zebra.
Station DW 9. - $18.09 .1986,22^{\circ} 53.9^{\prime} \mathrm{S}, 167^{\circ} 15.4^{\prime} \mathrm{E}, 500 \mathrm{~m}:$ M. sphecia.
Station DW 10. - 18.09.1986, $22^{\circ} 55.2^{\prime} \mathrm{S}, 167^{\circ} 16.3^{\prime} \mathrm{E}, 495 \mathrm{~m}$: M. barangei, M. ocyrhoe.
Station DW 11. - $18.09 .1986,22^{\circ} 52.1^{\prime} \mathrm{S}, 167^{\circ} 15.4 \mathrm{E}, 500 \mathrm{~m}: \mathrm{M}$. incerta.
Station DW 12. - 18.09.1986, $22^{\circ} 52.6^{\prime} \mathrm{S}, 167^{\circ} 14.0^{\prime} \mathrm{E}, 460 \mathrm{~m}: \mathrm{M}$. barangei.
Station DW 18 b. - $19.09 .1986,22^{\circ} 58.0^{\prime} \mathrm{S} .167^{\circ} 20.4^{\prime} \mathrm{E}, 535 \mathrm{~m}:$ M. alonsoi.
Station DC 26. - 21.09.1986, $22^{\circ} 59.3^{\prime} \mathrm{S}, 167^{\circ} 23.0$ E, $535 \mathrm{ml}:$ M. ocyrhoe, M. thoe.
Chalcal 2. New Caledonia.
Station CC 1. - 28.t0.1986, $24^{\circ} 54.96^{\prime} \mathrm{S}, 168^{\circ} 21.91^{\prime} \mathrm{E}, 500-580 \mathrm{~m}$: M. armilla, M. lawentae, M. marin, M. ocyrhoe, M. thoe, M. zebra, M. sp.

Station CC 2. - 28.10.1986, $24^{\circ} 55.48^{\prime} \mathrm{S}, 168^{\circ} 21.29^{\circ} \mathrm{E}, 500-610 \mathrm{~m}$: M. armilla, M. lanrentae, M. marimi, M. ocyrhoe, M. sabatesae, M. thoe, M. zebra.

Station CH 4. - $27.10 .1986,24^{\circ} 44.31^{\prime} \mathrm{S}, 168^{\circ} 09.94 \mathrm{E}, 253 \mathrm{~m}: \mathrm{M}$. urizae.
Station CP 18. - 27.10.1986, $24^{\circ} 47.00^{\prime} \mathrm{S}, 168^{\circ} 09.43 \mathrm{E}, 274 \mathrm{~m}$: M. rogeri, M. urizae.
Station CP 19. - 27.10.1986, $24^{\circ} 42.85^{\prime} \mathrm{S}, 168^{\circ} 09.73^{\prime} \mathrm{E}, 271 \mathrm{~m}:$ M. distiza, M. guttata, M. stigmatica, M. urizae.

Station CP 20. - 27.t0.1986, $24^{\circ} 44.60^{\prime} \mathrm{S}, 168^{\circ} 09.30 \mathrm{E}, 230-300 \mathrm{~m}:$ M. distiza, M. urizae.
Station CP 21. - 28.10.1986, $24^{\circ} 54.00^{\prime} \mathrm{S}, 168^{\circ} 21.61^{\prime} \mathrm{E}, 500 \mathrm{~m} ;$ M. armilla, M. gordoae, M. lanrentae, M. leagora, M. marini, M. thoe, M. zebra.

Station CP 25. - $30.10 .1986,23^{\circ} 38.60^{\prime} \mathrm{S}, 167^{\circ} 43.12^{\prime} \mathrm{E}, 418 \mathrm{~m}:$ M. barangei, M. zebra.
Station CP 26. - 31.10.1986, $23^{\circ} 18.15^{\prime} \mathrm{S}, 168^{\circ} 03.58^{\prime} \mathrm{E}, 296 \mathrm{~m}$: M. Iaenia, M. urizae.

Station CP 27, - 31.10.1986, $23^{\circ} 15.29^{\prime} \mathrm{S}, 168^{\circ} 04.55 \mathrm{E}, 289 \mathrm{~m}:$ M. taenia, M. wizae.
Station DW 72. - $28.10 .1986,24^{\circ} 54.50^{\prime} \mathrm{S}, 168^{\circ} 22.30^{\prime} \mathrm{E}, 527 \mathrm{~m}: M$. armilla, M. laurentae .
 M. laurentae, M. psamathe, M. psylla, M. thoe, M. sp.

Station DW 74. - 29.10.t986, $24^{\circ} 40.36^{\prime} \mathrm{S}, 168^{\circ} 38.38^{\prime} \mathrm{E}, 650 \mathrm{~m}:$ M. alonsoi, M. amblytes, M. armilla, M. elachia, M. ocyrhoe, M. psamathe, M. soelae, M. tmberculala, M. sp.

Station DW 7.5. - 29.10.1986, $24^{\circ} 39.31^{\prime} \mathrm{S}, 168^{\circ} 39.67$ ' $\mathrm{E}, 600 \mathrm{~m}:$ M. alonsoi, M. amblytes, M. armilla, M. laurentae, M. marini, M. psamathe, M. soelae, M. thoe, M. tuberculata, M. sp.

Station DW 76. - 30.10.1986, $23^{\circ} 40.50^{\prime} \mathrm{S}, 167^{\circ} 45.20 \mathrm{E}, 470 \mathrm{~m}: M$. alonsoi.
Station DW 78. - 30.10.1986, $23^{\circ} 41.30^{\prime} \mathrm{S}, 167^{\circ} 59.60^{\prime} \mathrm{E}, 233-360 \mathrm{~m}:$ M. ghttata, M. stigmatica, M. taemia.
Station DW 79. - 30.t0.1986, $23^{\circ} 40.50^{\circ} \mathrm{S}, 168^{\circ} 00.6 \mathrm{E}, 260 \mathrm{~m}:$ M. gultata.
Slation DW 80. - 31.10.1986, $23^{\circ} 26.70^{\prime} \mathrm{S}, 168^{\circ} 01.80^{\circ} \mathrm{E}, 80-160 \mathrm{~m}$: M. chnata.
Station DW 81. - 31.10.1986, $23^{\circ} 19.60^{\prime} \mathrm{S}, 168^{\circ} 03.40^{\prime} \mathrm{E}, 311 \mathrm{~m}:$ M. acantha, M. taenia.
Station DW 82. - 31.10.1986, $23^{\circ} 13.68^{\prime} \mathrm{S}, 168^{\circ} 04.27^{\prime} \mathrm{E}, 304 \mathrm{~m}:$ M. laurentae, M. sphecia.
Station DW 83. - 31.10.1986, $23^{\circ} 20.30^{\prime} \mathrm{S}$, $168^{\circ} 05.50^{\prime} \mathrm{E}, 200 \mathrm{~m}:$ M. guttata, M. notata, M. taemia.
Station DW 84. - 31.10.1986, $23^{\circ} 23.80^{\prime} \mathrm{S}, 168^{\circ} 07.10^{\prime} \mathrm{E}, 170 \mathrm{~m}:$ M. gordoae, M. guttata.

Biogeocal. New Caledonia.

Station CP 214. - 09.04.1987, $22^{\circ} 43.09 \times \mathrm{S}, 166^{\circ} 27.19^{\prime} \mathrm{E}, 1665-1590 \mathrm{~m}:$ M. tiresias.
Station CP 232. - 12.04. 1987, $21^{\circ} 33.81^{\prime} \mathrm{S}, 166^{\circ} 27.07^{\prime} \mathrm{E}, 760-790 \mathrm{~m}:$ M. eminens, M. microps, M. rosmla.
Station CP 253. - 16.04.1987, $21^{\circ} 31.75^{\prime} \mathrm{S}, 166^{\circ} 28.73^{\prime} \mathrm{E}, 310-315 \mathrm{~m}:$ M. hyatina.
Station DW 291. - 27.04.1987, $20^{\circ} 34.47$ 'S, $166^{\circ} 54.33^{\prime} \mathrm{E}, 510-520 \mathrm{~m}$; M. thoe.
Station DW 292. - $27.04 .1987,20^{\circ} 28.23^{\prime} \mathrm{S}, 166^{\circ} 48.45^{\prime} \mathrm{E}, 465-470 \mathrm{~m}:$ M. rosula.
Station CP 297, - 28.04.1987, 20 ${ }^{\circ} 38.64^{\prime} \mathrm{S}, 167^{\circ} 10.77^{\prime} \mathrm{E}, 1230-1240 \mathrm{~m}: \mathrm{M}$. microps.
Station DW 307. - 01.05.1987, 20 ${ }^{\circ} 35.38^{\prime} \mathrm{S}, 166^{\circ} 55.25^{\prime} \mathrm{E}, 470-480 \mathrm{~m}:$ M. armilla.
Station DW 308. - 01.05.1987, 20 ${ }^{\circ} 40.07^{\prime} \mathrm{S}, 166^{\circ} 58.05 \mathrm{E}, 510-590 \mathrm{~m}: M$. callista, M. sp.
SMtB 3. New Caledonia,
Station DW $1-20.05 .1987,24^{\circ} 55.70^{\prime} \mathrm{S}, 168^{\circ} 2 \mathrm{t} .80^{\prime} \mathrm{E}, 520 \mathrm{~m}: M$ armilla, M. eclepsis, M. lauremae, M. leagora, M. thoe, M. zebra.

Station DW 2. - 20.05.1987, $24^{\circ} 53.40^{\prime} \mathrm{S}, 168^{\circ} 21.70^{\prime} \mathrm{E}, 530 \mathrm{~m}: M$. armilla, M. lamentae, M. psamathe, M. soelae, M. thoe.

Station DW 3. - 20.05.1987, $24^{\circ} 55.00^{\circ} \mathrm{S}, 168^{\circ} 21.70^{\prime} \mathrm{E}, 513 \mathrm{~m}:$ M. armilla, M. lanrentae, M. moliae, M. thoe, M. zebra.

Station CP 4. - $20.05 .1987,24^{\circ} 54^{\prime} \mathrm{S}, 168^{\circ} 21.5^{\prime} \mathrm{E}, 530 \mathrm{~m}:$ M. armilla, M. thoe, M. zebra.
Station DW 5. - $21.05 .1987,24^{\circ} 54.9^{\prime} \mathrm{S}, 168^{\circ} 21.6^{\prime} \mathrm{E}, 502 \mathrm{~m}$: M. thoe, M. zebra.
Station DW 6. - 21.05.1987, $24^{\circ} 56.40^{\prime} \mathrm{S}, 168^{\circ} 21.20^{\prime} \mathrm{E}, 505 \mathrm{~m}:$ M. zebra.
Station DW 7. - $21.05 .1987,24^{\circ} 54.60^{\prime} \mathrm{S}, 168^{\circ} 21.30^{\prime} \mathrm{E}, 505 \mathrm{~m}: M$. armilla, M. laurenae.
Station DW 8. - $21.05 .1987,24^{\circ} 45.20^{\prime} \mathrm{S}, 168^{\circ} 08.00^{\prime} \mathrm{E}, 233 \mathrm{~m}:$ M. armilla.
Station DW 12. - 22.05.1987, 23 $37.70^{\prime} \mathrm{S}, 167^{\circ} 41.50^{\prime} \mathrm{E}, 470 \mathrm{~m}: M$. alonsoi, M. barangei, M. laurentae, M. ocyrhoe.

Station DW 13. - 22.05.1987, $23^{\circ} 37.50^{\prime} \mathrm{S}, 167^{\circ} 41.60^{\circ} \mathrm{E} .448 \mathrm{~m}:$ M. alonsoi.
Station DW 14. - 22.05.1987. $23^{\circ} 40.10^{\prime} \mathrm{S}, 167^{\circ} 59.70^{\circ} \mathrm{E}, 246 \mathrm{~m}:$ M. guttata.
Station DW t8. - 23.05. 1987, $23^{\circ} 41.50^{\prime} \mathrm{S}, 167^{\circ} 59.40^{\prime} \mathrm{E}, 338 \mathrm{~m}:$ M. stigmatica.
Station DW 21. - $24.05 .1987,22^{\circ} 59.20^{\prime} \mathrm{S}, 167^{\circ} 19.00^{\prime} \mathrm{E}, 525 \mathrm{~m}: M$. amblytes, M. incerta, M. rmfiantenmulata.
Station DW 22. - $24.05 .1987,23^{\circ} 03.00^{\prime} \mathrm{S}, 167^{\circ} \mathrm{t} 9.10^{\prime} \mathrm{E}, 503 \mathrm{~m}:$ M. lauremae.
Station DW 23. - 24.05.1987, $22^{\circ} 58.00^{\prime} \mathrm{S}, 167^{\circ} 20.00^{\prime} \mathrm{E}, 530 \mathrm{~m}: \mathrm{M}$. amblytes.
Smib 4. New Caledonia.
Slation DW 34. - 07.03.1989, $24^{\circ} 55.0^{\prime} \mathrm{S}, 168^{\circ} 22.0^{\prime} \mathrm{E}$. $5 \mathrm{t} 5 \mathrm{~m}:$ M. armilla, M. eclepsis, M. lamrentae, M. leagora, M. marini, M. ocyrhoe, M. thoe, M. zebra, M. sp.
Station DW 36. - 07.03.1989. $24^{\circ} 55.6^{\prime} \mathrm{S}, 168^{\circ} 2 \mathrm{t} .7^{\prime} \mathrm{E}, 530 \mathrm{~m}: M$. armilla, M. lauremae, M. rufiantenmiata, M. sphecia, M. zebra.

Station DW 37. - 07.03.1989, 24 ${ }^{\circ} 54.5^{\prime} \mathrm{S}, 168^{\circ} 22.3^{\prime} \mathrm{E}, 540 \mathrm{~m}:$ M. armilla, M. lanrentae, M. thoe, M. zebra.

Station DW 38. - 07.03.1989, $24^{\circ} 54.5^{\prime} \mathrm{S}, 168^{\circ} 22.0^{\prime} \mathrm{E}, 510 \mathrm{~m}:$ M. leagora, M. marini, M. ocyrhoe, M. thoe, M. zebra.

Station DW 39. - 07.03.1989, 24 ${ }^{\circ} 56.2^{\prime} \mathrm{S}, 168^{\circ} 21.5^{\mathrm{E}} \mathrm{E}, 560 \mathrm{~m}:$ M. armilla, M. laurentae, M. ocyrhoe, M. thoe .
Station DW 41. - 07.03.1989, $24^{\circ} 44.0^{\prime} \mathrm{S}, 168^{\circ} 08.6$ E. $235 \mathrm{~m}:$ M. ghttata.
Station DW 42. $-08.03 .1989,24^{\circ} 45.7^{\prime} \mathrm{S}, 168^{\circ} 08 . \mathrm{AE}^{\mathrm{E}}, 320 \mathrm{~m}:$ M. javieri, M. spilota.
Station DW 44. - 08.03.1989, $24^{\circ} 46.0^{\prime} \mathrm{S}, 168^{\circ} 08.2^{\prime} \mathrm{E}, 300 \mathrm{~m}:$ M. distiza, M. javieri, M. prizae.
Station DW 51. $-09.03 .1989,23^{\circ} 41.3^{\prime} \mathrm{S}, 168^{\circ} 00.6 \mathrm{E}, 260 \mathrm{~m}:$ M. guttata.
Station DW 55. - 09.03.1989, 23 ${ }^{\circ} 21.4^{\prime} \mathrm{S} .168^{\circ} 04.5^{\prime} \mathrm{E}, 260 \mathrm{~m}:$ M. armilla, M. Iauremae, M. taenia, M. thoe, M. zebra.

Stalion DW 56. - 09.03.1989, $23^{\circ} 20.6^{\prime} \mathrm{S}, 168^{\circ} 05.2^{\prime} \mathrm{E}, 260 \mathrm{~m}:$ M. taenia.
Station DW 57. - 09.03.1989, 23 ${ }^{\circ} 21,5^{\prime}$ S, $168^{\circ} 04.6 \mathrm{E}, 260 \mathrm{~m}:$ M. ghtata.
Station DW 58. - 10.03.1989, 22 ${ }^{\circ} 59.8^{\prime} \mathrm{S}, 167^{\circ} 24.2^{\prime} \mathrm{E}, 560 \mathrm{~m}:$ M. tanrentae.
Station DW 62. $-10.03 .1989,23^{\circ} 00.4^{\prime} \mathrm{S}, 167^{\circ} 21.8^{\mathrm{E}}, 540 \mathrm{~m} ;$ M. ocyrhoe.
Slalion DW 65. - 10.03.1989, $22^{\circ} 55.3^{\prime} \mathrm{S}, 167^{\circ} 14.5^{\prime} \mathrm{E}, 420 \mathrm{~m}:$ M. zebra.
Station DW 66. - $10.03 .1989,22^{\circ} 56.3^{\prime} \mathrm{S}, 167^{\circ} 14.6^{\prime} \mathrm{E}, 430 \mathrm{~m}:$ M. sphecia.
Slation DW 68. - $10.03 .1989,22^{\circ} 55.0^{\prime} \mathrm{S}, 167^{\circ} 16.0^{\prime} \mathrm{E}, 440 \mathrm{~m}: M$. sphecia.
Station DW 69. - 10.03.1989. 22 ${ }^{\circ} 55.8^{\prime} \mathrm{S}, 167^{\circ} 14.3^{\prime} \mathrm{E} .405 \mathrm{~m}: \mathrm{M}$. laurentae.

Smib 5. New Caledonia.

Station DW 70. - 07.09.1989, $23^{\circ} 40.6^{\prime} \mathrm{S}, 168^{\circ} 01 . \mathrm{I}^{\prime} \mathrm{E}, 260-270 \mathrm{~m}$: M. taenia.
Slation DW 76. - 07.09.1989, $23^{\circ} 41.2^{2} \mathrm{~S}, 168^{\circ} 00.5^{ } \mathrm{E}, 240-280 \mathrm{~m}:$ M. gutata.
Slation DW 78. - 07.09.1989, 23 ${ }^{\circ} 40.8^{\prime} \mathrm{S}$. $168^{\circ} 00.2^{\prime} \mathrm{E}, 235-248 \mathrm{~m}: M$. guttata.
Station DW 80.-07.09.1989, $23^{\circ} 41.9^{\prime} \mathrm{S}, 168^{\circ} 00.4^{\prime} \mathrm{E}, 270-300 \mathrm{~m}:$ M. guttata.
Station DW 81. - 09.09.1989, 22 $2^{\circ} 38.2^{\prime} \mathrm{S}, 167^{\circ} 34.8^{\prime} \mathrm{E}, 110 \mathrm{~m}$: M. clinata.
Station DW 82. - 09.09.1989, 22 $31.7^{\prime} \mathrm{S} .167^{\circ} 32.4^{\mathrm{E}}, 155 \mathrm{~m}:$ M. clinata.
Station DW 84. - 13.09.1989, $22^{\circ} 20.8^{\prime} \mathrm{S}, 168^{\circ} 43.1^{\prime} \mathrm{E}, 290 \mathrm{~m}:$ M. stigmatica,
Station DW 86. - $13.09 .1989,22^{\circ} 19.8^{\prime} \mathrm{S}, 168^{\circ} 42.8^{\prime} \mathrm{E}, 320 \mathrm{~m}$: M. brachytes, M. sphecia, M. stigmatica.
Station DW 87. - 13.09.1989, $22^{\circ} 18.17^{\prime} \mathrm{S} .168^{\circ} 41.3^{\prime} \mathrm{E} .335-370 \mathrm{~m}:$ M. acamha, M. stigmatica.
Slalion DW 88. - $13.09 .1989,22^{\circ} 18.6^{\prime} \mathrm{S}, 168^{\circ} 40.2^{\prime} \mathrm{E}, 350 \mathrm{~m}$: M. sphecia.
Stalion DW 90. - 13.09.1989, $22^{\circ} 19.1^{\circ} \mathrm{S}, 168^{\circ} 41.6^{\prime} \mathrm{E}, 340 \mathrm{~m}:$ M. mizae.
Slation DW 91. - 13.09.1989, $22^{\circ} 18.4^{\prime} \mathrm{S}, 168^{\circ} 41.1^{\prime} \mathrm{E}, 335-340 \mathrm{~m}:$ M. moliae, M. notata.
Slation DW 94. - $13.09 .1989,22^{\circ} 19.6^{\prime} \mathrm{S}, 168^{\circ} 42.8^{\circ} \mathrm{E}, 260-275 \mathrm{~m}$: M. gutata, M. notata.
Station DW 96. - 14.09.1989, 23 ${ }^{\circ} 00.0^{\prime} \mathrm{S} .168^{\circ} 18.7^{\circ} \mathrm{E}, 245 \mathrm{~m}:$ M. climata.
Station DW 97. - 14.09.1989, 23 01.1'S, $168^{\circ} 18.0^{\prime} \mathrm{E}, 300 \mathrm{~m}:$ M. acamha, M. sphecia, M. stigmatica.
Station DW 98. - $14.09 .1989,23^{\circ} 01.7^{\prime} \mathrm{S}, 168^{\circ} 16.1^{\prime} \mathrm{E}, 320-335 \mathrm{~m}:$ M. zebra.
Station DW 99. - 14.09.1989, $23^{\circ} 24.77^{\prime} \mathrm{S}, 168^{\circ} 05.4^{\prime} \mathrm{E}, 58 \mathrm{~m}$: M. climata.
Station DW 100. - $14.09 .1989,23^{\circ} 22.9^{\prime} \mathrm{S}, 168^{\circ} 05.2^{\prime} \mathrm{E}, 120 \mathrm{~m}:$ M. ctinata.
Station DW 101. - 14.09.1989, 23² $21.2^{\prime} \mathrm{S}$. $168^{\circ} 04.9^{\prime} \mathrm{E}, 225-270 \mathrm{~m}$; M. taenia.
Stalion DW 102. - 14.09.1989, $23^{\circ} 19.6^{\prime} \mathrm{S}, 168^{\circ} 04.7^{\prime} \mathrm{E}, 290-305 \mathrm{~m}$: M. Iaenia.
Station DW 103. - 14.09.1989, 23 ${ }^{\circ} 17.4^{\prime} \mathrm{S}, 168^{\circ} 04.8^{\prime} \mathrm{E}, 300-315 \mathrm{~m}:$ M. taenia.
Slation DW 104, - 14.09.1989, 23 ${ }^{\circ} 14.3^{\prime} \mathrm{S}, 168^{\circ} 04.5^{\prime} \mathrm{E}, 305-335 \mathrm{~m}:$ M. acamha, M. sphecia, M. taenia.

AZTĖQUE. New Caledonia.

Station CH 3. - 13.02.1990. $23^{\circ} 39.2^{\prime} \mathrm{S}, 168^{\circ} 01.3^{\prime} \mathrm{E}, 290-400 \mathrm{~m}:$: M. Aamrenae .
Station CH 6. - $14.02 .1990,23^{\circ} 40.4^{\prime} \mathrm{S}, 167^{\circ} 45.4^{\prime} \mathrm{E}, 425-470 \mathrm{~m}:$ M. tavremoe.
Station CH 11. - 15.02.1990, $22^{\circ} 52.3^{\prime} \mathrm{S}, 167^{\circ} 32.1^{\prime} \mathrm{E}, 340-360 \mathrm{~m}$: M. sphecia.

Smib 6. New Caledonia.

Stalion DW 106. - 02.03.1990, 19 ${ }^{\circ} 08.1^{\prime} \mathrm{S}, 163^{\circ} 30.7 \mathrm{E}, 165-195 \mathrm{~m}$: M. sao, M. tyche.
Stalion DW 107. - 02.03.1990, 1907.6'S, 163 ${ }^{\circ} 30.2^{\prime} \mathrm{E}, 195-205 \mathrm{~m}:$ M. sao.
Slalion DW 108. - 02.03.1990, 19 06.9'S, $163^{\circ} 30.1^{\prime} \mathrm{E}, 210-220 \mathrm{~m}:$ M. sao.
Slation DW 110. - 02.03.1990, 1904.9'S, $163^{\circ} 29.8^{\prime} \mathrm{E}, 225-230 \mathrm{~m}:$ M. sao.
Station DW 112. - 02.03.1990, 1905.6'S, 163 ${ }^{\circ} 30.2^{\prime} \mathrm{E}, 220-225 \mathrm{~m}:$ M. sao.
Stalion DW 116. - 02.03.1990, 18 ${ }^{\circ} 59.3^{\prime} \mathrm{S}, 163^{\circ} 26.2^{\prime} \mathrm{E}, 290-300 \mathrm{~m}:$ M. notata.

Station DW 118. - 03.03.1990. $18^{\circ} 58.5^{\prime} \mathrm{E}, 163^{\circ} 26.3^{\prime} \mathrm{E}, 290-300 \mathrm{~m}$; M. acaniha.
Station DW 120. - 03.09.1990, $18^{\circ} 58.5^{\prime} \mathrm{S} .163^{\circ} 25.6^{\prime} \mathrm{E}, 310-325 \mathrm{~m}: M$. notata.
Station DW 124. - 03.03.1990, $18^{\circ} 56.2^{\prime} \mathrm{S}$. $163^{\circ} 24.5^{\prime} \mathrm{E}, 360-405 \mathrm{~m}: M$. 1totata, M. sabatesae.
Station DW 12.5. - 03.03.1990, $18^{\circ} 57.4^{\prime} \mathrm{S}, 163^{\circ} 23.5^{\prime} \mathrm{E}, 335-350 \mathrm{~m}:$ M. notata.
Station DW 126. - 03.03.1990. $18^{\circ} 59.1^{\prime} \mathrm{S}, 163^{\circ} 22.7^{\prime} \mathrm{E}, 320-330 \mathrm{~m}:$ M. notata.
Station DW 127. - 04.09.1990, $19^{\circ} 08.8^{\prime} \mathrm{S}, 163^{\circ} 22.6^{\mathrm{E}} \mathrm{E} .190-205 \mathrm{~m}:$ M. sao.
Station DW 128. - 04.09.1990, $19^{\circ} 06.2^{\prime} \mathrm{S}, 163^{\circ} 22.4^{\mathrm{E}} \mathrm{E}, 205-215 \mathrm{~m}:$ M. sao.
Station DW 130. - 04.09.1990, 19 $9^{\circ} 04.9^{\prime} \mathrm{S}, 163^{\circ} 21^{\prime} \mathrm{E}, 190-295 \mathrm{~m}:$ M. tyche.
MUSORSTOM 6. Loyalty Islands.
Station DW 391. - $13.02 .1989,20^{\circ} 47.35^{\prime} \mathrm{S}, 167^{\circ} 05.70^{\prime} \mathrm{E}, 390 \mathrm{~m}: \mathrm{M}$. leagora, M. notata, M. niniantenimuta, M. runcinata.

Station DW 393. - 13.02.1989, 20 ${ }^{\circ} 48.29^{\prime} \mathrm{S}, 167^{\circ} 09.54^{\prime} \mathrm{E}, 420 \mathrm{~m}:$ M. laurentae.
Station DW 398. - $13.02 .1989,20^{\circ} 47.19^{\prime} \mathrm{S}, 167^{\circ} 05.65^{\prime} \mathrm{E}, 370 \mathrm{~m}: \mathrm{M}$. notata.
Station DW 399. - $14.02 .1989,20^{\circ} 41.80^{\prime} \mathrm{S}, 167^{\circ} 00.20^{\prime} \mathrm{E}, 282 \mathrm{~m}:$ M. gıttata, M. notata.
Station CP 401. - 14.02.1989, 20 $0^{\circ} 42.15^{\prime} \mathrm{S}, 167^{\circ} 00.35^{\prime} \mathrm{E}, 270 \mathrm{~m}: M$. gordoae.
Station DW 406. - 15.02.1989, 20 $0^{\circ} 40.65^{\prime} \mathrm{S}, 167^{\circ} 06.80^{\prime} \mathrm{E} .373 \mathrm{~m}:$ M. 1lotata, M. sphecia, M. zebra
Station DW 407. - 15.02.1989. 20 ${ }^{\circ} 40.70^{\prime} \mathrm{S}, 167^{\circ} 06.60^{\prime} \mathrm{E}, 360 \mathrm{~m}:$ M. zebra.
Station CP 408. - $15.02 .1989,20^{\circ} 41.10^{\prime} \mathrm{S}, 167^{\circ} 07.45^{\prime} \mathrm{E}, 380 \mathrm{~m}:$ M. callirrhoe, M. leagora.
Station DW 411. - $15.02 .1989,20^{\circ} 40.65^{\prime} \mathrm{S}, 167^{\circ} 03,35^{\prime} \mathrm{E}, 424 \mathrm{~m}: M$. callir r hoe.
Station DW 412. - 15.02.1989. 20 ${ }^{\circ} 40.60^{\prime} \mathrm{S}, 167^{\circ} 03.75^{\prime} \mathrm{E}, 437 \mathrm{~m}: M$. callirhoe.
Station DW 413. - 15.02.1989, 20 $0^{\circ} 40.10^{\prime} \mathrm{S}, 167^{\circ} 03.50^{\prime} \mathrm{E}, 463 \mathrm{~m}:$ M. narini.
Station CP 415. - 15.02.1989. $20^{\circ} 40.20^{\prime} \mathrm{S}, 167^{\circ} 03.95^{\prime} \mathrm{E}, 461 \mathrm{~m}:$ M. callirr hoe, M. squamosa.
Station DW 418. - $16.02 .1989,20^{\circ} 41.75^{\prime} \mathrm{S}, 167^{\circ} 03.35^{\prime} \mathrm{E}, 283 \mathrm{~m}:$ M. gordoae.
Station CP 419. - $16.02 .1989,20^{\circ} 41.65^{\prime} \mathrm{S}, 167^{\circ} 03,70^{\prime} \mathrm{E}, 283 \mathrm{~m}: M$. bellior, M. distiza, M. notata, M. pseliophor a.

Station CP 427. - $17.02 .1989,20^{\circ} 23.35^{\prime} \mathrm{S}, 166^{\circ} 20.00^{\prime} \mathrm{E}, 800 \mathrm{~m}: M$. eminens.
Station DW 428. - 17.02.1989, $20^{\circ} 23.54^{\prime} \mathrm{S}, 166^{\circ} 12.57^{\prime} \mathrm{E} .420 \mathrm{~m}:$ M. leagora .
Station DW 430. - $17.02 .1989,20^{\circ} 21.17^{\prime} \mathrm{S}, 166^{\circ} 07.25^{\prime} \mathrm{E}, 30 \mathrm{~m}:$ M. olivarae.
Station DW 431. - $18.02 .1989,20^{\circ} 22.25^{\prime} \mathrm{S}, 166^{\circ} 10.00^{\prime} \mathrm{E}, 21 \mathrm{~m}:$ M. leptitis.
Station DW 436. - 18.02.1989, 20 20.27 'S, $166^{\circ} 07.49^{\prime} \mathrm{E}, 33 \mathrm{~m}:$ M. olivarae.
Station CP 437. - 18.02.1989, $20^{\circ} 20.14^{\prime} \mathrm{S}, 166^{\circ} 08.12^{\prime} \mathrm{E}, 31 \mathrm{~m}:$ M. olivarae.
Station CP 438. - 18.02.1989, 20 $23.00^{\prime} \mathrm{S}, 166^{\circ} 20.10^{\prime} \mathrm{E}_{\mathrm{r}} 780 \mathrm{~m}:$ M. eminens, M. rosula.
Station DW 441. - $19.02 .1989,20^{\circ} 53.76^{\prime} \mathrm{S}, 167^{\circ} 16.86^{\prime} \mathrm{E}, 80 \mathrm{~m}:$ M. leptosyue.
Station CP 455. - 20.02.1989, 21 ${ }^{\circ} 00.65^{\prime} \mathrm{S}, 167^{\circ} 26.08^{\prime} \mathrm{E}, 260 \mathrm{~m}: M$. rogeri.
Station DW 457. - 20.02.1989, $21^{\circ} 00.42^{\prime} \mathrm{S}, 167^{\circ} 28.71^{\prime} \mathrm{E}, 353 \mathrm{~m}: M$. notata.
Station DW 460. - 21.02.1989, $21^{\circ} 01.722^{\prime} \mathrm{S}, 167^{\circ} 31.45^{\prime} \mathrm{E}, 420 \mathrm{~m}: M$. callirrhoe, M. leagora, M. sphecia.
Station CP 464. - $21.02 .1989,21^{\circ} 02.30^{\prime} \mathrm{S}, 167^{\circ} 31.60^{\prime} \mathrm{E}, 430 \mathrm{~m}: M$. callirrhoe, M. sphecia, M. inncinata, M. zebra.

Station CP 465. - $21.02 .1989,21^{\circ} 03.55^{\prime} \mathrm{S}, 167^{\circ} 32.25^{\prime} \mathrm{E}, 480 \mathrm{~m}:$ M. callir r hoe, M. squamosa.
Station CP 466. - 21.02.1989. $21^{\circ} 05.25^{\prime} \mathrm{S}, 167^{\circ} 32.20^{\prime} \mathrm{E}, 540 \mathrm{~m}:$. M. incerta, M. laurentae, M. rhodona, M. sp.
Station CP 467, - $21.02 .1989 .21^{\circ} 05.13^{\prime} \mathrm{S}, 167^{\circ} 32.11^{\prime} \mathrm{E}, 575 \mathrm{~m}:$ M. callirrhoe, M. laurentae, M. squamosa.
Station DW 469. - 21.02.1989, $21^{\circ} 03.64^{\prime} \mathrm{S}, 167^{\circ} 34.67^{\prime} \mathrm{E}, 630 \mathrm{~m}: M$. incer ra .
Station CC 470. - $21.02 .1989,21^{\circ} 04.40^{\prime} \mathrm{S}, 167^{\circ} 33.20^{\prime} \mathrm{E}, 560 \mathrm{~m}:$. incerta, M. lawentae, M. rhodonia.
Station DW 472. - 22.02.1989.21 $08.60^{\prime} \mathrm{S}, 167^{\circ} 54.70^{\prime} \mathrm{E}, 300 \mathrm{~m}:$ M. acantha, M. sphecia.
Station DW 473. - 22.02,1989, $21^{\circ} 0880^{\prime} \mathrm{S}, 167^{\circ} 55.30^{\prime} \mathrm{E}, 236 \mathrm{~m}:$ M. gordoae, M. gıttata.
Station DW 474. - 22.02.1989. $21^{\circ} 08.80^{\prime} \mathrm{S}, 167^{\circ} 55.50^{\prime} \mathrm{E}, 260 \mathrm{~m}: M$. rogeri.
Station DW 477. - 22.02.1989. $21^{\circ} 07.98^{\prime} \mathrm{S}, 167^{\circ} 54.69^{\prime} \mathrm{E}, 550 \mathrm{~m}: M$. notata.
Station DW 478. - 22.02.1989, $21^{\circ} 08.96^{\prime} \mathrm{S}, 167^{\circ} 54.28^{\prime} \mathrm{E}_{1} 400 \mathrm{~m}:$ M. leagora.
Station DW 480. - $22.02 .1989,21^{\circ} 08.50^{\prime} \mathrm{S}, 167^{\circ} 55.98^{\prime} \mathrm{E}, 380 \mathrm{~m}:$ M. distiza, M. psylla.
Station CP 481. - $23.02 .1989,21^{\circ} 21.85^{\prime} \mathrm{S}, 167^{\circ} 50.30^{\prime} \mathrm{E}, 300 \mathrm{~m}:$ M. marini, M. notata, M. proto.
Station DW 482. - $23.02 .1989,21^{\circ} 21.50^{\prime} \mathrm{S}, 167^{\circ} 46.80^{\prime} \mathrm{E}, 375 \mathrm{~m}: M$. noliae.
Station DW 483. - 23.02.1989, 21 ${ }^{\circ} 19.8^{\prime} \mathrm{S}, 167^{\circ} 47.8^{\prime} \mathrm{E}, 600 \mathrm{~m}:$ M. pagesi.
Station DW 485. - 23.02.1989, $21^{\circ} 23.48^{\prime} \mathrm{S}, 167^{\circ} 59.33^{\prime} \mathrm{E}, 350 \mathrm{~m}:$ M. armilla.
Station DW 487. - 23.02.1989.21 23.30'S, $167^{\circ} 46.40^{\prime} \mathrm{E}_{1} 500 \mathrm{~m}:$ M. runcinata.

Station DW 488. - 24.02.1989, $20^{\circ} 49.20^{\prime} \mathrm{S}, 167^{\circ} 06.44^{\prime} \mathrm{E}, 800 \mathrm{~m}:$ M. eminens.

Volsmar. Matthew and Hunter Islands.

Station DW 5. - 01.06.1989, 22 $2^{\circ} 25.9^{\prime} \mathrm{S}, 171^{\circ} 46.5 \mathrm{E}, 700 \mathrm{~m}:$ M. armilla, M. psamathe.
Station DW 6. - 01.06.1989, $22^{\circ} 27.2^{\prime} \mathrm{S}, 17 \mathrm{t}^{\circ} 44.5^{\prime} \mathrm{E}, 480 \mathrm{~m}:$ M. rufiantemulata.
Station DW 7. - $01.06 .1989,22^{\circ} 26^{\prime} \mathrm{S}, 171^{\circ} 44.1^{\prime} \mathrm{E}, 400 \mathrm{~m}: M$. distiza, M. spilota, M. stigmatica.
Station DW 8. - 08.06.1989, $22^{\circ} 21.6^{\prime} \mathrm{S}, 168^{\circ} 43.1^{\prime} \mathrm{E}, 420 \mathrm{~m}:$ M. lauremae.
Station DW 39. - 08.06.1989, $22^{\circ} 20.5^{\prime} \mathrm{S}, 168^{\circ} 43.5^{\prime} \mathrm{E}, 305 \mathrm{~m}:$ M. wrizae.
Station DW 48. - 04.07.1989, $21^{\circ} 00.1^{1} \mathrm{~S}, 170^{\circ} 03.5 \mathrm{E}, 200 \mathrm{~m}:$ M. gordoae.
Station DW 50. - 04.07.1989, 20 ${ }^{\circ} 59.1^{\circ} \mathrm{S}, 170^{\circ} 03.5^{\mathrm{E}} \mathrm{E}, 425 \mathrm{~m}:$ M. rufiantenmiata, M. javieri.
Station DW 51. - 04.07.1989, 20 $0^{\circ} 58.5^{\prime} \mathrm{S}, 170^{\circ} 03.4^{\prime} \mathrm{E}, 450 \mathrm{~m}:$ M. armilla, M. thoe, M. mberculata.
Station DW 52. - 04.07.1989, 20 $0^{\circ} 59.1^{\prime} \mathrm{S}, 170^{\circ} 02.7^{\prime} \mathrm{E}, 510 \mathrm{~m}: \mathrm{M}$. nberculata.
Station DW 60. $-05.07 .1989,20^{\circ} 59.3^{3} \mathrm{~S}, 170^{\circ} 03.4^{\circ} \mathrm{E}, 190 \mathrm{~m}:$ M. olivarae.

Chalcal I. Chesterfield Islands.

Station DC 2. - 13.07.1984, $21^{\circ} 14.41^{\prime} \mathrm{S}, 162^{\circ} 16.27^{\prime} \mathrm{E}, 80-\mathrm{t} 20 \mathrm{~m}:$ M. bellor, M. clinata, M. gordoae.
Station DC 3. - $13.07 .1984,21^{\circ} 14.00^{\circ} \mathrm{S}, 162^{\circ} 16.40^{\prime} \mathrm{E}, 120-150 \mathrm{~m}: M$. gordoae, M. notata.
Station DC 5. - 14.07.1984, 20 ${ }^{\circ} 57.98^{\prime} \mathrm{S}, 161^{\circ} 45.36^{\prime} \mathrm{E}, 400 \mathrm{~m}:$ M. moliae, M. notata.
Station DC 14. - 16.07.1984, 19 ${ }^{\circ} 26.90^{\prime} \mathrm{S}$. $158^{\circ} 35.41^{\prime} \mathrm{E}, 246 \mathrm{~m}$ M. notata.
Station DC 29. - $18.07 .1984,19^{\circ} 30.60^{\prime} \mathrm{S} .158^{\circ} 31.10^{\prime} \mathrm{E} .100 \mathrm{~m}$: M. leptosyme.
Station DC 30. - 18.07.1984, 19 ${ }^{\circ} 31.10^{\prime} \mathrm{S}, 158^{\circ} 30.60^{\prime} \mathrm{E}, 150-180 \mathrm{~m}:$ M. gordoac, M. tyche.
Station DC 31. - 18.07.1984, 1933.30ㅇ, 158 ${ }^{\circ} 30.30^{\prime} \mathrm{E}, 230 \mathrm{~m}:$ M. notata.
Station DC 32. - 19.07.1984, $19^{\circ} 43.22^{\prime} \mathrm{S}, 158^{\circ} 33.19{ }^{\prime}$ E. $350 \mathrm{~m}:$ M. notata, M. taenia.
Station CP 38. - 19.07.1984. 19 ${ }^{\circ} 43.80^{\prime} \mathrm{S}, 158^{\circ} 35.25^{\prime} \mathrm{E} .348 \mathrm{~m}:$ M. sphecia, M. taemia.
Station DC 43. - 23.07.1984, $20^{\circ} 41.50^{\prime} \mathrm{S}, 1.58^{\circ} 38.40^{\prime} \mathrm{E}, 78 \mathrm{~m}$: M. clinata.
Station DC 55. - $25.07 .1984,21^{\circ} 23.90^{\circ} \mathrm{S}, 158^{\circ} 59.60^{\circ} \mathrm{E}, 55 \mathrm{~m}:$ M. clinata.
Station DC $56 .-25.07 .1984,21^{\circ} 24.40^{\prime} \mathrm{S}, 159^{\circ} 08.80^{\prime} \mathrm{E}, 60 \mathrm{~m}$: M. clinata.
Station DC 67. - 28.07.1984, $22^{\circ} 34.80^{\prime} \mathrm{S}, \mathrm{t} 59^{\circ} 09.40^{\circ} \mathrm{E}, 277 \mathrm{~m}:$ M. stigmatica.

MUSORSTOM 5. Chesterfield Islands.

Station DW 250. - 07.10.1986, $25^{\circ} 02.20^{\prime} \mathrm{S} .159^{\circ} 59.90^{\prime} \mathrm{E}, 850 \mathrm{~m}:$ M. notata.
Station DW 255. - 07.10.1986, 25 ${ }^{\circ} 15.40^{\prime}$ S, 159 ${ }^{\circ} 54.80^{\circ} \mathrm{E} .280-295 \mathrm{~m}:$ M. notata.
Station DW 258. - 08.10.1986, 25 ${ }^{\circ} 32.8^{\prime} \mathrm{S}, 159^{\circ} 46.10^{\prime} \mathrm{E}, 300 \mathrm{~m}:$ M. pseliophoro.
Station DW 263. - 08.10.1986, 25 ${ }^{\circ} 21.3^{\prime} \mathrm{S}$. $159^{\circ} 46.44^{\prime} \mathrm{E}, 150-225 \mathrm{~m}: M$. notata.
Station CP 267. - 08.10.1986, $25^{\circ} 23.60^{\prime} \mathrm{S}$. $159^{\circ} 47.20^{\prime} \mathrm{E}, 285 \mathrm{~m}:$ M. psellophora.
Station CP 268. - 09.10.1986, $24^{\circ} 44.70^{\prime} \mathrm{S}, 159^{\circ} 39.20^{\circ} \mathrm{E}, 280 \mathrm{~m}: M$. notata.
Station CP 269. - 09.10.1986, $24^{\circ} 47.00^{\prime} \mathrm{S}, 159^{\circ} 37.30^{\prime} \mathrm{E}, 270-2.50 \mathrm{~m}:$ M. notata.
Station DW 273. - 09.10.1986, $24^{\circ} 43.02^{\prime} \mathrm{S}, 159^{\circ} 43.26^{\prime} \mathrm{E}, 290 \mathrm{~m}:$ M. stigmatica.
Station DW 274. - 09.10.1986, $24^{\circ} 44.83^{\prime} \mathrm{S}, 159^{\circ} 41.00^{\prime} \mathrm{E}, 285 \mathrm{~m}:$ M. proto, M. pseliophora.
Station CP 276 . - 09.10.t986, $24^{\circ} 48.90^{\prime} \mathrm{S}, 159^{\circ} 40.90^{\prime} \mathrm{E}, 269-258 \mathrm{~m}:$ M. rogeri.
Station CP 278. - 10.10.1986, $24^{\circ} 10.80^{\prime} \mathrm{S}, 159^{\circ} 38.10^{\prime} \mathrm{E}, 265 \mathrm{~m}: M$. leagora.
Station DW 280. - $10.10 .1986,24^{\circ} 09.99^{\prime} \mathrm{S}, 159^{\circ} 35.75^{\circ} \mathrm{E}, 270 \mathrm{~m}: M$. rogeri, M. sabatesae, M. stigmatica.
Station DW 282. - $10.10 .1986,24^{\circ} 11.55$ 'S, $159^{\circ} 32.222^{\prime} \mathrm{E}, 226-230 \mathrm{~m}:$ M. proto.
Station CP 287. - $10.10 .1986,24^{\circ} 05.40^{\circ} \mathrm{S}, 159^{\circ} 36.30^{\prime} \mathrm{E}, 270 \mathrm{~m}: M$. rogeri.
Station CP 288. - $10.10 .1986,24^{\circ} 04.80^{\prime} \mathrm{S}, 159^{\circ} 36.80^{\prime} \mathrm{E} .270 \mathrm{~m}:$ M. rogeri.
Station CP 289. - $10.10 .1986,24^{\circ} 01.50^{\prime} \mathrm{S}, 159^{\circ} 38.40^{\circ} \mathrm{E}, 273 \mathrm{~m}:$ M. notala, M. rogeri.
Station DC 291. - $11.10 .1986,23^{\circ} 07.70^{\prime} \mathrm{S}, 159^{\circ} 28.40^{\prime} \mathrm{E}, 300 \mathrm{mI}$: M. rogeri.
Station DW 299. - 11.10.1986, $22^{\circ} 47.70^{\prime} \mathrm{S}, 159^{\circ} 23.70^{\prime} \mathrm{E}, 360-390 \mathrm{~m}: M$. rogeri, M. stigmatica.
Station DW 300. - $11.10 .1986,22^{\circ} 48.27^{\prime} \mathrm{S}, 159^{\circ} 23.94^{\prime} \mathrm{E}, 450 \mathrm{~m}: M$. callista, M. leagora, M. notata, M. rufiantemulata, M. sphecia.

Station DW 301. - 12.10.1986. $22^{\circ} 06.90^{\prime} \mathrm{S}, 159^{\circ} 24.60^{\prime} \mathrm{E}, 487-610 \mathrm{~m}:$ M. leagora, M. notata, M. rufiamennulata, M. stio, M. urizae.
Station DW 302.- t2.10.1986, $22^{\circ} 10.00^{\circ} \mathrm{S}, 159^{\circ} 23.30^{\prime} \mathrm{E}, 345-360 \mathrm{~m}: M$. stigmatica.
Station DW 304. - $12.10 .1986,22^{\circ} 10.34^{\circ} \mathrm{S}, 159^{\circ} 25.51^{\prime} \mathrm{E}, 385-420 \mathrm{~m}: M$. notata.

Station DW 305. - 12.10.1986, $22^{\circ} 09.27^{\prime} \mathrm{S}, 159^{\circ} 24.42^{\prime} \mathrm{E}, 430-440 \mathrm{~m}:$ M. javieri, M. Ieagora, M. stia.
Station DW 306. - $12.10 .1986,22^{\circ} 07.66^{\circ} \mathrm{S}, 159^{\circ} 21.40^{\prime} \mathrm{E}, 375-415 \mathrm{~m}$: M. laurentae, M. leagora, M. sphecia.
Station CP 315. - $13.10 .1986,22^{\circ} 25.32^{\prime} \mathrm{S}, 159^{\circ} 27.40^{\prime} \mathrm{E}, 330-335 \mathrm{~m}: M$. bellior.
Station CP 323. - $14.10 .1986,21^{\circ} 18.52^{\prime} \mathrm{S}, 157^{\circ} 57.62^{\prime} \mathrm{E}, 970 \mathrm{~m}:$ M. eminens, M. microps.
Station CP 324. - $14.10 .1986,21^{\circ} 15.01^{\prime} \mathrm{S}, 157^{\circ} 51.33^{\prime} \mathrm{E}, 970 \mathrm{~m}:$ M. eminent, M. microps.
Station DW 328. - 15.10.1986, $20^{\circ} 22.80^{\prime} \mathrm{S}, 158^{\circ} 43.60^{\circ} \mathrm{E} .355-340 \mathrm{~m}:$ M. notata.
Station DW 329. - $15.10 .1986,20^{\circ} 22.90^{\prime} \mathrm{S}, 158^{\circ} 46.60^{\circ} \mathrm{E}, 320 \mathrm{~m}: \mathrm{M}$. norata.
Station CP 332. - $15.10 .1986,20^{\circ} 17.44^{\prime} \mathrm{S}, 158^{\circ} 48.86^{\prime} \mathrm{E}, 400 \mathrm{~m}$: M. leagora, M. notata, M. sphecia.
Station DW 338. - 15.10.1986, 19 $9^{\circ} 51.60^{\prime} \mathrm{S}, 158^{\circ} 40.40^{\prime} \mathrm{E}, 540-580 \mathrm{~m}: M$. Iamremae, M. leagora.
Station DW 339. - 16.10.1986, 1953.40'S, $158^{\circ} 37,90^{\prime} \mathrm{E}, 380-395 \mathrm{~m}:$ M. stia, M. taenia.
Station DW 341. - 16.10.1986, 19 $9^{\circ} 45.90^{\prime} \mathrm{S}, 158^{\circ} 43.37^{\circ} \mathrm{E}, 630-620 \mathrm{~m}:$ M. incerta.
Station DC 345. - 16.10.1986, $19^{\circ} 39.70^{\prime} \mathrm{S}, 158^{\circ} 32.40^{\prime} \mathrm{E}, 305-310 \mathrm{~m}:$ M. notata, M. rogeri.
Station DW 348. - 17.10.1986, $19^{\circ} 36.00^{\prime} \mathrm{S}, 158^{\circ} 31.70^{\prime} \mathrm{E}, 260 \mathrm{~m}:$ M. gordoae, M. notata.
Station DW 349. - 17.10.1986, $19^{\circ} 34.45^{\prime} \mathrm{S}, 158^{\circ} 34.48^{\prime} \mathrm{E}, 275 \mathrm{~m}: \mathrm{M}$. notata.
Station DW 354. - $18.10 .1986,19^{\circ} 31^{\circ} 06^{\prime} \mathrm{S}, 158^{\circ} 42.56 \mathrm{E}, 420-450 \mathrm{~m}:$ M. erato.
Slation DW 355. - 18.10.1986, $19^{\circ} 36.43^{\prime} \mathrm{S}, 158^{\circ} 43.4 \mathrm{I}^{\prime} \mathrm{E}, 580 \mathrm{~m}: M$. ocyr hoe.
Station DC 358. - 18.10.1986, 19³8.39'S. $158^{\circ} 47.17^{\prime} \mathrm{E}, 680-700 \mathrm{~m}:$ M. incerta.
Station CP 359. - 18.10.1986, 19 ${ }^{\circ} 39.00^{\prime}$ ', $158^{\circ} 49.00^{\prime} \mathrm{E}, 700-720 \mathrm{~m}:$ M. hyalina, M. incerta.
Station DC 361. - 19.10.1986, 19 ${ }^{\circ} 52.50^{\prime} \mathrm{S}, 158^{\circ} 38.10^{\prime} \mathrm{E}, 400 \mathrm{~m}:$ M. taemia, M. sia.
Station DC 362. - 19.10.1986, 195 52.90'S, 158 ${ }^{\circ} 40,00^{\prime} \mathrm{E}, 410 \mathrm{~m} ;$ M. stia.
Station CP 363. - 19.10.1986, 1947.90'S, 15844.30'E, $700-685 \mathrm{~m}:$ M. incerta.
Station CP 364. - 19.10.1986, $19^{\circ} 45.30^{\circ} \mathrm{S}, 158^{\circ} 46.50^{\circ} \mathrm{E}, 675 \mathrm{~m}:$ M. incerta.
Station CC 365. - $19.10 .1986,19^{\circ} 42.82^{\prime} \mathrm{S}, 158^{\circ} 48.00^{\prime} \mathrm{E}, 710 \mathrm{~m}: M$. incerta.
Station DC 368. - 20.10.1986, $19^{\circ} 52.30^{\prime} \mathrm{S}, 158^{\circ} 32,80^{\prime} \mathrm{E}, 305 \mathrm{~m}:$ M. rogeri.
Station DC 375. - 20.10.1986, 19 ${ }^{\circ} 52.20^{\prime} \mathrm{S}$, $158^{\circ} 29.70^{\circ} \mathrm{E}, 300 \mathrm{~m}:$ M. notata.
Station DC 378. - 20.10.1986, $19^{\circ} 53.74^{\prime} \mathrm{S}, 158^{\circ} 38.30^{\prime} \mathrm{E}, 355 \mathrm{~m}:$ M. sphecia, M. taenia.
Station CC 383. - 21.10.1986, 19 ${ }^{\circ} 40.85^{\prime} \mathrm{S}, 158^{\circ} 46.10^{\prime} \mathrm{E}, 615-600 \mathrm{~m}:$ M. incerta.
Station DC 385. - 22.10.1986, 20 ${ }^{\circ} 53.60^{\prime} \mathrm{S}, 160^{\circ} 49.40^{\prime} \mathrm{E}, 745-750 \mathrm{~m}:$ M. andrewi.
Sta1ion CP 386. - 22.10.1986, 20 ${ }^{\circ} 56.21^{\prime} \mathrm{S}, 160^{\circ} 51.12$ ' $, 770-755 \mathrm{~m}:$ M. audrewi, M. rosula.
Station CP 387. - 22.10.1986, 20 ${ }^{\circ} 53.41^{\prime}$ 'S, $160^{\circ} .52 .14^{\prime} \mathrm{E}, 650-660 \mathrm{~m}:$ M. andrewi, M. incerta, M. leviantennata, M. rosula.

Slation DC 388. - $22.10 .1986,20^{\circ} 45.35^{\prime}$ S. $160^{\circ} 53.29^{\prime} \mathrm{E}, 500-510 \mathrm{~m}:$ M. Iamremae, M. marini.
Station CP 389. - 22.10.1986, 20 $0^{\circ} 44.95^{\prime} \mathrm{S}$. $160^{\circ} 53.67^{\prime} \mathrm{E}, 500 \mathrm{~m}:$ M. ilicerta.
Station CC $390 .-22.10 .1986,21^{\circ} 00.90^{\prime} \mathrm{S}, 160^{\circ} 50.30^{\prime} \mathrm{E}, 745-825 \mathrm{~m}$: M. andtewi, M. eminens.

Corail 2. Chesterfield Islands.

Station DW 3. - 20.07.1988, $20^{\circ} 50.42^{\prime} \mathrm{S}, 161^{\circ} 34.19^{\prime} \mathrm{E}, 58 \mathrm{~m}: M$. clinata.
Station CP 7. - 20.07.1988, $20^{\circ} 51.977^{\prime} \mathrm{S}, 161^{\circ} 36.94^{\circ} \mathrm{E}, 64 \mathrm{~m}:$ M. leprosyme.
Station DE 13. - $21.07 .1988,21^{\circ} 02.77^{\prime}$ 'S, $160^{\circ} 55^{\prime} \mathrm{E}, 700-705 \mathrm{~m}:$ M. andrewi, M. thodonia, M. rosma.
Station DE 14. - 21.07.1988, $21^{\circ} 00.69^{\prime} \mathrm{S}, 160^{\circ} 57.18^{\prime} \mathrm{E}, 650-660 \mathrm{~m}: M$. alonsoi, M. andrew i.
Station DE 15. - 21.07.1988, $20^{\circ} 50.72^{\prime} \mathrm{S}, 160^{\circ} 55.25^{\prime} \mathrm{E}, 580-590 \mathrm{~m}:$ M. andrewi, M. incerta.
Station DE 16. - 21.07.1988, $20^{\circ} 47.75 \mathrm{~S}, 160^{\circ} 55.87 \mathrm{E}, 500 \mathrm{~m}:$ M. incerta, M. marini.
Station CP 17. - 21.07.1988, $20^{\circ} 48.14^{\prime} \mathrm{S}, 160^{\circ} 57.14^{\prime} \mathrm{E}, 500 \mathrm{~m}:$ M. incerta, M. marini.
Station DW 93. - 27.08.1988, $19^{\circ} 05.92^{\prime} \mathrm{S}, 158^{\circ} 53^{\circ} \mathrm{E}, 58-60 \mathrm{~m}:$ M. clinata.
Station DW 114. - 28.08.1988, $19^{\circ} 24.67^{\prime} \mathrm{S}, 150^{\circ} 37.78^{\prime} \mathrm{E}, 217 \mathrm{~m}:$: M. notata.
Station DW 129. - 29.08.1988, 19² $27.74^{\prime} \mathrm{S}, 158^{\circ} 34.31^{\prime} \mathrm{E}, 215 \mathrm{~m}:$ M. notata, M. thoe, M. tyche.
Station CP 131. - 29.08.1988. $19^{\circ} 25.49^{\prime} \mathrm{S}$, $158^{\circ} 37.96^{\circ} \mathrm{E}, 215-217 \mathrm{~m}:$ M. notata, M. yyche.
Station DW 141. - 30.08.1988, $19^{\circ} 33.95^{\prime} \mathrm{S}, 158^{\circ} 27.34^{\circ} \mathrm{E}, 95 \mathrm{~m}:$ M. gordoae,
Station CP 162. - 01.09.1988. 1946.24'S, 158은.67' $\mathrm{E}, 203-208 \mathrm{~m}$: M. pomopored.

Musorstom 1. Philippines.

Station CP $40 .-24.03 .1976,13^{\circ} 57.4^{\prime} \mathrm{N}, 120^{\circ} 27.8^{\prime} \mathrm{E}, 265-287 \mathrm{~m}:$ M. incerta.
Station CP 50. - $25.03 .1976,13^{\circ} 49.22^{\prime} \mathrm{N}, 120^{\circ} 01.8^{\circ} \mathrm{E}, 415-510 \mathrm{~m}: M$. incerta, M. leviantemata.
Station CP 51. - 25.03.1976. $13^{\circ} 49.4^{\prime} \mathrm{N}, 120^{\circ} 04.2^{\prime} \mathrm{E}, 170-200 \mathrm{~m}: \mathrm{M}$. inceria.
Station CP 57. - 26.03.1976, $13^{\circ} 53.1^{\prime} \mathrm{N}, 120^{\circ} 13.2 \mathrm{Z}^{\circ} \mathrm{E}, 96-107 \mathrm{ml}$: M. clmata, M. elegantissima.

Station CP $62 .-27.03 .1976,13^{\circ} 59.5^{\prime} \mathrm{N}, 120^{\circ} 15.6 \mathrm{E}, 179-194 \mathrm{~m}:$ M. distiza, M. elegantissima.
Station CP 63. $-27.03 .1976,14^{\circ} 00.8^{\prime} \mathrm{N}, 120^{\circ} 15.8^{\prime} \mathrm{E}, 191-195 \mathrm{~m}: M$. distiza.
Musorstom 2. Philippines.
Station CP 8. $-21.11 .1980,13^{\circ} 55^{\circ} \mathrm{N}, 120^{\circ} 20^{\circ} \mathrm{E}, 85-90 \mathrm{~m}$: M. elegamissima.
Station CP 17. - 22.11.1980, $14^{\circ} 00.0^{\prime} \mathrm{N}, 120^{\circ} 17.1^{\prime} \mathrm{E}, 174-193 \mathrm{~m}:$ M. distiza.
Station CP 36. - 24.11.1980, $13^{\circ} 31.4^{\circ} \mathrm{N}, 121^{\circ} 23.9^{\circ} \mathrm{E}, 569-595 \mathrm{~m}:$ M. ruffantemulata.
Station CP $40 .-25.11 .1980,13^{\circ} 07.7 \mathrm{~N}, 122^{\circ} 39.1^{\prime} \mathrm{E}, 280-440 \mathrm{~m}: M$. incerta.
Station CP 47. - 26.11.1980, $13^{\circ} 33.0^{\prime} \mathrm{N}, 122^{\circ} 10.1^{\prime} \mathrm{E}, 81-84 \mathrm{~m}:$ M. clinata, M. eleganissima.
Station CP 51. - $27.11 .1980,13^{\circ} 59.3^{\prime} \mathrm{N}, 120^{\circ} 16.4^{\prime} \mathrm{E}, 170-187 \mathrm{~m}: M$. distiza, M. rufiamenmlata.
Station CP 56. - 28.11.1980, $13^{\circ} 53.7 \mathrm{~N}, 119^{\circ} 56.3^{\circ} \mathrm{E}, 970 \mathrm{~m}:$ M. microps.
Station CP 75. - 01.12.1980. $13^{\circ} 50.5^{\prime} \mathrm{N}, 120^{\circ} 30.3^{\prime} \mathrm{E}, 300-330 \mathrm{~m}:$ M. incerta.
Station CP 83. - 02.12.1980, $13^{\circ} 55.2^{\prime} \mathrm{N}, 120^{\circ} 30.5^{\circ} \mathrm{E}, 318-320 \mathrm{~m}:$ M. incerta.

Musorstom 3. Philippines.

Station CP 116. - 03.06.1985, $12^{\circ} 32.2^{\prime} \mathrm{N}$. $120^{\circ} 46.4^{\prime} \mathrm{E}, 804-812 \mathrm{~m}:$ M. eminens.
Station DR 117. - 03.06.1985, $12^{\circ} 31.2^{\prime} \mathrm{N} .120^{\circ} 39.3^{\circ} \mathrm{E}, 92-97 \mathrm{~m}$: M. clinata, M. elegamtissima.
Station CP 119. - 03.06.1985. $11^{\circ} 59.7^{\prime} \mathrm{N}, 121^{\circ} 12.7^{\top} \mathrm{E}, 320-337 \mathrm{~m}$: M. incerta.
Station CP 121. - 03.06.1985. $12^{\circ} 08.3^{\prime} \mathrm{N} .121^{\circ} 17.3^{\circ} \mathrm{E}, 73-84 \mathrm{~m}:$ M. сlinata.
Station CP 123. - 04.06.1985, $12^{\circ} 10.6 \mathrm{~N}, 121^{\circ} 45^{\circ} \mathrm{E}, 700-702 \mathrm{~m}: M$. incerta.
Station CP 133. - 05.06.1985, $11^{\circ} 57.8^{\prime} \mathrm{N}, 121^{\circ} 52.25^{\prime} \mathrm{E}, 334-390 \mathrm{~m}$: M. incerta, M. rufiantemulata.
Station CP 134. - 05.06.1985. 12 ${ }^{\circ} 01.1^{\prime} \mathrm{N}, 121^{\circ} 57.3^{\prime} \mathrm{E}, 92-95 \mathrm{~m}$: M. clinata.
Station DR 137. - $06.06 .1985,12^{\circ} 03.5^{\prime} \mathrm{N}, 122^{\circ} 05.8^{\circ} \mathrm{E}, 56 \mathrm{~m}:$: M. clinata.
Station CP 144. - 07.06.1985, $12^{\circ} 01.6^{\circ} \mathrm{N} .124^{\circ} 04.2^{\circ} \mathrm{E}, 379-383 \mathrm{~m}:$ M. rufiamemmiata.
CORINDON 2. Indonesia.
Station CH 229. - 04.11.1980, $0^{\circ} 02.2^{\prime} \mathrm{N}, 119^{\circ} 49.8^{\circ} \mathrm{E}, 445-411 \mathrm{~m}$: M. leviamennata.
Station CH 240. - 05.11.1980. $0^{\circ} 37.6^{\circ}$ S. $119^{\circ} 33.5^{\circ} \mathrm{E} .675 \mathrm{~m}$: M. eninens.

SYSTEMAT1C ACCOUNT

Key to the species of Munida from New Caledonia and adjacent waters

1. Fourth abdominal segment armed with dorsal spines ... 2

- Fourth abdominal segment spineless 17

2. Antennal peduncle spineless M. leviantennata (p. 491)

- First and second antennal segments armed with spines 3

3. Fourth abdominal segment lacking spine on posterior ridge 4

- Fourth abdominal segment with spine on posterior ridge 7

4. Two spines on posterior transverse ridge of carapace 5

- No spines on posterior transverse ridge of carapace 6

5. Extensor margin of merus of third maxilliped with distal spine
\qquad- Extensor margin of merus of third maxilliped unarmedM. lanrentae (p. 483)
6. Three spines on lateral margins of carapace behind cervical groove. Second abdominalsegment armed with 6 dorsal spinesM. sphecia (p. 531)

- Four spines on lateral margin of car M. sabatesae (p. 525)

7. First antennai segment with unusually prolonged process 8

- First antennal segment with moderate process 12

8. Cardiac spines absent 9

- Cardiac spines present 10

9. Distomesial spine shorter than distolateral on basal antennular segment. Carapace with few secondary striae- Distomesial spine longer than distolateral on basal antennular segment. Carapace with
numerous secondary striac M. incerta (p. 748)
10. Median mesogastric spines abscnt M. eminens (р. 466)

- Median mesogastric spine present 11

11. Distomesial spine longer than distolateral on basal antennular segment. Thoracic sternites with numerous striae M. callirrhoe (p. 453)

- Distomesial spine shorter than distolateral on basal antennular segment. Thoracic sternites with few striac M. marini (p. 492)

12. Pair of protogastric spines behind pair of epigastric spines M. soelae (p. 530)

- No protogastric spines 13

13. Median spine on metagastric region

- No median spine on metagastric region 14

14. Spines absent on cardiac region M. yante (p. 555)

- One or several spines on cardiac region 15

15. Transverse row of spinules on cardiac region

- Prominent median spinc on cardiac region 500)

16. Two spines on posterior transverse ridge of carapace M. squamosa (p. 537)

- No spines on posterior transverse ridge of carapace M. spinicordata (p. 534)

17. Three or four spines on lateral margins of carapacc behind cervical groove 18

- Five spines on lateral margins of carapace behind cervical groove 31

18. Abdominal segments unarmed
19
19

- Second abdominal segment with spines 24

19. Distal spine on flexor border of carpus of third maxilliped. Epipods on first 10 third pereiopods 20

- Carpus of third maxilliped unarmed. Epipods absent on all pereiopods 21

20. Distal spine on extensor margin of merus of third maxilliped. Third antennal segment with distolateral spine M. elegantissima (p. 465)

- Extensor margin of merus of third maxilliped unarmed. Third antennal segment unamed..
M. bellior (p. 450)

21. Lateral parts of fifth to seventh thoracic sternites with distinct carinac
M. psylla (p. 517) Latcral parts of fifth to seventh thoracic sternites without carinac 22
22. Latcral parts of seventh thoracic stemite with small granules. Distomesial spine on basal antennular segment shorler than distolateral. Distomesial spine on basal antennal segment well developed. reaching end of second segment M. hyalina (p. 477)

- Lateral parts of scventh thoracic sternite without granules. Distal spines on basal antennular segment subequal. Distomesial spine on basal antennal segment short, not reaching and of second segment 23

23. External orbital spine on carapace long. situated at anterolateral angle. Carapace with numerous secondary striac and scales M. callista (p. 454)

- External orbital spine on carapace small, situated on frontal margin between supraocular spine and anterolateral angle. Carapace with few secondary striac M. javieri (p .480)

24. Lateral parts of posterior thoracic sternites with granutes or carinae 25

- Lateral parts of posterior thoracic sternites without granules or carinae 28

25. Lateral parts of posterior thoracic sternites with distinct carinae M. rufiantennulata (p. 523)

- Lateral parts of posterior thoracic sternites with granules 26

26. Lateral parts of thoracie sternites 6 and 7 with many small granules
M. rogeri (р. 518)

- Lateral parts of thoracic sternite 7 with some coarse granules 27

27. Distomesial spine on basal antennular segment longer than distolateral
M. Leptosyne (р. 489)

- Distomesial spine on basal antennular segment shorter than distolateral M. gordoae (p. 469)

28. Distomesial spine on basal antennular segment distinctly shorter than distolateral. Fingers of chetiped unarmed M. psamathe (p. 513)

- Distal spines on basal antennular segment subequal or slightly different in size. Fixed finger of cheliped with spines along lateral border 29

29. Distal half of ventral border of dactylus of walking tegs unarmed M. masi (p. 495)

- Dactylus of walking legs wilh movable spinules along entire ventral border 30

30. Antennular peduncle exceeding comea M. erato (p. 466)

- Antennular peduncte ending at same level of comea M. zebra (p. 556)

31. Eye small. comea barely wider than eyestalk. Maximum corneal diameter less than $1 / 5$ 32length of anterior border of carapace between external orbital spines

- Eyc large, cornea dilated. Maximum comeal diameter cqual to or greater than $1 / 4$ length of anterior border of carapace between external orbital spines 34

32. Distomesial spine on basal antennal segment well developed, reaching end of second segment M. typhle (p. 549)

- Distomesial spine on basal antennal segment very small. distinetly not reaching end of second segment 33

33. External orbital and second lateral spines on carapace before cervical groove small. subequal; first spine much mesial than second. M. tiresias (p. 545)
External orbital spine on carapace well developed, distinctly longer than second lateral spine and situated at anterolateral angle M. magniantennulata
34. Abdominal segments unarmed or with spines on each side of anterior ridge on second tergite 35
Abdominal segments with median pair of spines or with spines along anterior ridge of 52second tergite
35. Lateral parts of seventh thoracic sternite with granules M. stigmatica (p. 538)

- Lateral parts of seventh thoracic sternite without granules 36

36. Distal spines on basal antennular segment subequal 37

- Distal spines on basal antennular segment of different length 43

37. Extensor margin of merus of third maxilliped with distal spine 38

- Extensor margin of merus of third maxilliped unarmed 41

38. Frontal margins distinctly oblique M. clinata (p. 457)

- Frontal margins transverse 39

39. Dorsal carapace surface armed only with epigastric spines M. runcinata (p. 525)

- Dorsal carapace surface ammed with other spines, in addition to epigastric spines 40

40. Dactylus of walking legs with spines along entire ventral border. Thoracic sternites with fow striae M. spilota (p. 533)

- Dactylus of walking legs unarmed on terminal third of ventral margin. Thoracic sternites with numerous striac M. sao (p. 436)

41. Distomesial spine on sccond antennal segment not excecding antennal peduncle
M. brachytes (p. 450)

- Distomesial spine on second antennal segment distinctly exceeding antennal peduncle 42

42. Eye large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines

\qquad
M. leagora (р. 485)

- Eye small, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines M. pseliophora (p. 515)

43. Distomesial spine on basal antennular segment longer than distolateral 44

- Distomesial spinc on basal antennular segment shorter than distolateral 48

44. Extensor margin of merus of third maxilliped with distal spine 45

- Extensor margin of merus of third maxilliped unarmed 47

45. Frontal margins distinctly oblique M. olivarae (р. 505)- Frontal margins transverse46
46. Distomesial spine on basal antennal segment distinctly excecding antennal peduncle. Dactylus of walking legs with spines along entire ventral border ... M. acantha (p. 440)

- Distomesial spinc on basal antennal segment not exceeding antennal peduncle. Terminal third ol' ventral margin of dactylus of walking legs unarmed M. notata (p. 500)

47. Eyc large, maximum corncal diameter more than $1 / 3$ length of anterior border of carapace between bases of extemal orbital spines. Antennular peduncle not exceeding comeaM. moliae (p. 499)

- Eye moderately large, maximum comeal diameter less than $1 / 3$ length of anterior border of carapace between bases of external orbital spincs. Antennular peduncle distinctly excecding comea48. Rostrum as long as remaining carapace- Rostrum shorter than remaining carapace49

49. Fixed finger of cheliped unarmed M. alonsoi (p. 443)

- Fixed finger of cheliped with spines along lateral border 50

50. Chelipeds and walking legs long and slender. First walking leg about 2.5 times carapace length M. proto (p. 509)

- Chelipeds and walking legs short. First walking leg about 2 times carapace length 51

51. Dactylus of walking legs with spincs along nearly entire ventral border. Cheliped movable finger with only basal spine M. leptitis (p. 487)

- Terminal third of dactylus of walking legs unarmed. Cheliped movable finger with spincs along mesial border52. Lateral parts of posterior thoracic stemites with granules53
- Latcral parts of postcrior thoracic sternites without granules 60

53. Lateral parts of thoracic stemites 6 and 7 with granules 54

- Lateral parts of thoracic stemite 7 with some coarse granutes 58

54. Lateral parts of thoracic sternites covered with many smali granules 55

- Lateral parts of thoracic stermites with a few coarse granules 57

55. Extensor margin of merus of third maxilliped with distal spine. Antennular peduncle not exceeding comea M. taenia (p. 541)

- Extensor margin of merus of third maxilliped unarmed. Antennular peduncle distinctly exceeding comea 56

56. Granules on thoracic sternites 6 and 7 forming lines. Distal spines on basal antennular segment subequal M. Iineola (p. 491)

- Granules on thoracic stemites 6 and 7 homogeneously scattered. Distomesial spine on basal antennular segment longer than distolateral M. pontoporea (p. 509)

57. Distomesial spine on basal antennal segment slightly longer than distolateral. One basat and onc distal spines on mesial margin of cheliped movable finger M. idyia (p. 477)

- Distal spines on basal antennat segment subequal. Several spines along proximal half of mesial border of cheliped movable finger M. tyche (p. 549)

58. Extensor margin of merus of third maxilliped with distal spine M. guttata (p. 471)

- Extensor margin of merus of third maxilliped unarmed 59

59. One row of spines along mesial margin of cheliped movable finger. Distomesial spine on basal antennular segment longer than distolateral M. distiza (p. 459)

- One basal spine on mesial margin of cheliped movable finger. Distomesial spine on basal antennular segment shorter than distolateral. M. armilla (p. 446)

60. Rostrum laterally compressed 61

- Rostrum spiniform 62

61. Thoracic sternites with numcrous striac. Second abdoninal segment with numerous transverse striac Munida sp. (p. 558)

- Thoracic sternites smooth, striae nearly absent. Second abdominal segment with few transverse striae M. cornuta (p. 4.59)

62. Basal antennal segment without distomesial spine M. amblytes (p. 443)

- Basal antennal segment with well developed distomesial spine 63 63

63. Antennal peduncle small M. tuberculata (p. 547)

- Antennal peduncle well developed 64 64

64. Distal spines on basal antennular segment subequal 65

- Distal spines on basal antennular segment differing in length 70

65. Two median spines on anterior border of second abdominal segment M. inornata

- Six or more spines along anterior border of second abdominal segment 66

66. Terminal third of ventral margin of dactylus of walking legs unarmed M. semoni (p. 530)
67
67

- Dactylus of walking tegs with spines along entire ventral margin
on

67. Fingers of cheliped with subterminal spines only and, if present. one basal spine on
fixed finger
fixed finger 68 68

- Fingers of cheliped with several spines in addition to subterminal spines 69

68. Carapace with few secondary striac between main striac. Chelipeds moderatety long andslenderM. rosula (p. 521)

- Carapace with numcrous secondary striac belween main striae. Cheljpeds short and massive
M. rhodonia (р. 517)

69. Second abdominal segment with one transverse stria. Dactylus of walking legs long. slightly shorter than propodus- Second abdominal segment with numerous transverse striae. Dactylus of walking legsshort, half as long as propodusM. thoe (p. 542)
70. Distolateral spine on basal antennular segment longer than distomesial 71

- Distolateral spine on basal antennular segment shorter lhan dislomesial 75

71. Terminal third of venlral border of dactylus of walking legs unarmed 72

- Dactylus of walking legs with spines along entire ventral border 73

72. Second abdominal segment with numerous transverse slriae. Fourth and fifth thoracic sternites with numerous short arcuate striae.

\qquad
M. pagesi (p .507)

- Second abdominal segment with 2 striac. Thoracic sternites smooth, without striac
M. sacksi

73. Fixed finger of cleliped with a row of spines along lateral margin
\qquadM. eclepsis (p. 463)

- Fixed finger of cheliped unarmed or with only one spine in addition to subterminal spines 74

74. Antennular peduncle not exceeding cornea. Eye large, maximal corneal diameter $1 / 2$ lengih of anterior border of carapace between bases of external orbilal spines
M. militaris (p. 496)

- Antennular peduncle distinctly excecding cornea. Eyc moderately large. maximal cornealdiameler $1 / 4$ length of anterior border of carapace between bases of external orbital spines .
\qquadM. microps (p. 496)

75. Merus of third maxilliped with extensor margin armed with distal spine. Thirdabdominal scgment unarmed
\qquadM. haswelli (p. 474)

- Merus of third maxilliped with extensor margin unarmed. Third abdominal segment with dorsal spinesM. gracilis (p .47 I)

Munida abelloi sp. nov.

Fig. 1

MATER1AL EXAMINED. - Kiribati. $400 \mathrm{~m}, 04.1987$: $1 \delta 16.6 \mathrm{~mm}$, hololype (MNHN.Ga 2528).
Etymology. - This species is dedicated to P. Abello. of the Instituto de Ciencias del Mar, Barcelona, for his supporl in my works on crustaccans.

DESCRIPTION. - Carapace with secondary striac. Intestinal region with one scalc. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few striae: fifth to seventh smooth. Abdominal segments unarmed. Second and third segments with several transverse striae. Two pairs of gonopods present on first and second abdominal segments. Eyc moderately large. maximum corneal diameter less than $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segmenn of antennule (distal spines excluded) distinctly excecding cornca. distomesial spine longer than distolateral. Distomesial spine on first segment of antennal peduncle reaching end of third segmenl; distomesial spine on second segment slightly excceding anlennal peduncle. Extensor border of merus of hird

Ftg. 1. - Munida abelloi sp. nov.. $\delta 16.6 \mathrm{~mm}$, holotype from Kiribati : a. carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped. laterat vicw; e, right cheliped, dorsal view; f, right lirst walking leg, lateral view; g, dactylus of right first walking leg. lateral view.
maxilliped unarmed. Fixed margin. Dactylus of walking legs $1 / 2$ propodus lengih, will movable spinules along entire ventral margin.

REMARKS. - M. abelloi is close to M. moliac sp. nov. from New Calcdonia and Loyalty lslands (sce below under the Remarks of that species).

Distribution. - Kiribali, 400 m .

Munida acantha sp. nov.

Figs 2, 64
Material fexamined. - New Caledonia. Biocal : stn 38, $360 \mathrm{ml}: 197.3 \mathrm{~mm}$ (MNHN-Ga 2529),
MUSORSTOM $4: \sin 148,59 \mathrm{~m}: 9 \delta 6.0$ to $9.4 \mathrm{~mm} ; 4$ ov. $\% 8.7$ to 9.8 mm (MNHN-Ga 3252), -Sin 163.350 m ; 1 of $5.9 \mathrm{~mm} ; 194.7 \mathrm{~mm}$ (MNHN-Ga 2530). - Sin I64, $250 \mathrm{~m}: 198.5 \mathrm{~mm}$ (MNHN-Ga 3253). - Stn 183.280 m : 6 of 7.0 to $11.4 \mathrm{~mm} ; 5 \mathrm{ov}$. 98.7 to 10.3 mm (USNM). - $\operatorname{Stn} 193.430 \mathrm{~m}: 7$ 万6 $6.51012 .6 \mathrm{~mm}: 7 \mathrm{ov}$. 97.6 to $10.4 \mathrm{~mm} ; 3$ ㅇ 9.8 to 10.5 mm (MNHN-Ga 3254). - Stn $196,450 \mathrm{~m}: 7$ o 6.5 to $11.6 \mathrm{~mm} ; 3$ ov. 88.41011 .0 mm ; 1 ¢ 10.7 mm (MNHN-Ga 2532, 2533).

SMib $2: \operatorname{stn} 6,442-460 \mathrm{~m}: 1$ 才 $7.0 \mathrm{~mm} ; 1 \mathrm{ov} . \% 8.0 \mathrm{~mm}$ (MNHN-Ga 2534).
Chalcal $2: \sin 81.31 \mathrm{Im}: 2 \delta 5.8$ and $11.6 \mathrm{~mm} ; 1 \circ 10.9 \mathrm{~mm}$ (MNHN-Ga 2535).
Smib $5: \operatorname{stn} 87,335-370 \mathrm{~m}: 294.5$ and $6.0 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 3255)$. - Stn $104,330 \mathrm{~m}: 3 \mathrm{ov} .98 .2 \mathrm{to} 9.3 \mathrm{~mm} ; 19$ 6.0 mm (MNHN-Ga 3256).

Smib $6: \operatorname{stn} 118,290-300 \mathrm{~m}: 1$ ¢ 6.0 mm (MNHN-Ga 2537).
Loyalty Istands. MUSORSTOM 6 : stn $472,300 \mathrm{~m} ; 1 \mathrm{ov} .96 .0 \mathrm{~mm}$ (MNHN-Ga 2536).
Atotl de Surprise : stn 444, 28.02.1985, $18^{\circ} 15^{\prime} \mathrm{S}, 162^{\circ} 59^{\prime} \mathrm{E}, 300-350 \mathrm{~m}: 13 \quad{ }^{\circ} 6.71012 .0 \mathrm{~mm} ; 5$ \& 5.0 to 10.0 mm (MNHN.Ga 3257).

Types. - The male of 11.6 mm from Musorstom 4, Stn 196 (MNHN-Ga 2532) has been selected as hololype; the other specimens are paratypes.

Etymology. - From the Greck, acantha, spinc, in reference to the long distomesial spinc on the basal antennal segment. The name is considered as a substantive in apposition.

DESCRIPTION. - Carapace with secondary siriae. Intestinal region wilhout scales. External orbital spine long situated at anterolaleral angic of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few short arcuate striae; fifth to seventh without striae. Sccond abdominal segment with 2-3 spines on each side. Second and third segmenis each wilh 3-4 transverse striae. Males with two pairs of gonopods. Eyc large, maximum corneal diameler about $1 / 2$ length of anterior border of carapace belween bases of external orbital spincs. Basal segment of antennule (distal spines excluded) ending al same level of cornea, distomesial spine longer than distolaleral. Distomesial spine on first and second segments of antennal peduncle exceeding antennal peduncle. Extensor border of merus of third maxilliped with small distal spinc. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial borders, respectively. Dactylus of walking legs less lhan half as long as propodus. with movable spinules along entire ventral margin.

CoLOUR. - Ground colour of carapace and abdominal segments light orange. Rostrum and supraocular spines light orange. Second to fourth abdominal scgments with some red spots. Chelipeds missing in specimens photographed. Walking legs whitish with small red spots; dactylus pinkish.

REmarks. - M. acantha is closely related lo M. notata sp. nov. from New Caledonia, Loyaliy lslands and Chesterfield Islands. The relationships are discussed in lhe Remarks under this latler specics (see below).

Size. - The males cxamined ranged between 5.8 and 12.6 mm , females between 4.5 and 11.4 mm ; ovigerous femates from 6.0 mm .

Distribution. - New Calcdonia, Loyalty Isiands and Atoll de Surprise, belween 59 and 460 m .

Fig. 2. - Munida acantha sp. nov., $\delta 11.6 \mathrm{~mm}$, holotype from Stn 196 (Musorstom 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d. right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 3. - Munida alonsoi sp. nov., $\delta 5.6 \mathrm{~mm}$, holotype from Stn 12 (SMIB 3) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of ceplalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; \mathbf{g}, daclylus of right first walking
leg, lateral view.

Munida alonsoi sp. nov.

Fig. 3
MATERTAL EXAMINED. - New Caledonia. Biocal : $\sin 36,650.680 \mathrm{~m}: 1 \delta 3.6 \mathrm{~mm} ; 3 \mathrm{ov}$. ㅇ 3.5 to 5.3 mm (MNHN.Ga 2538), - Sin 46, $570.610 \mathrm{~m}: 5$ \% 3.8 to $4.2 \mathrm{~mm} ; 5 \mathrm{ov}$. 92.8 to $3.7 \mathrm{~mm} ; 5$ ㅇ 2.8 to 3.2 mm (MNHN-Ga 2539).

Musorstom $4: \sin 216,490-515 \mathrm{~m}: 1$ of 5.9 mm (MNHN.Ga 2540). - $\operatorname{Sin} 220,505.550 \mathrm{~m}: 2 \mathrm{ov} .93 .7$ and 4.5 mm (MNHN Ga 2541). - Sin 221, 535-560 m: 3.8 .6 to 4.5 mm (MNHN-Ga 3504).

Smib 2 : stn 18B, 530-535 m: 1 \% 6.3 mm (USNM).
Chalcal 2: sin 73, $573 \mathrm{~m}: 1 \mathrm{ov}$. 93.2 mm (MNHN Ga 2543). - Sin $74,470 \mathrm{~m}: 4$ o $2.7103 .6 \mathrm{~mm} ; 5 \mathrm{ov}$. Y 2.7 104.0 mm (MNHN-Ga 2544). - $\operatorname{Sin} 75,600 \mathrm{~m}: 1$ of $4.6 \mathrm{~mm} ; 3$ ov. 93.6 to 3.9 mm (MNHN-Ga 2545). - Sin 76. $470 \mathrm{~m}: 26$ § 2.7 to $5.8 \mathrm{~mm} ; 25 \mathrm{ov}$. 오 2.2 to $4.2 \mathrm{~mm} ; 4$ ㅇ 3.0 to 3.5 mm (MNHN-Ga 2546 and USNM).
 (MNHN-Ga 2549).

Chesterfield Islands. Corall $2: \sin 14,650.660 \mathrm{~m}: t$ ov. $\$ 3.3 \mathrm{~mm}$ (MNHN Ga 2550).
TYpes. - One mate of 5.6 mm from SMIB 3, Stn 12 (MNHN-Ga 2547) has been selected as the holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to M. A. Alonso-Zara7agA, of the Museo Nacional de Ciencias Nalurales in Madrid, for his support of taxonomy.

DESCRIPTION. - Carapace with few sccondary striac. Intestinal region wilhout seales. External orbital spine well developed, situaled al anterolateral angle of carapace. Branchial margin with 5 spines, fifth spine very small. Thoracic sternites without striac. Abdomint segments unarmed. Second and lhird abdominal segments each with one transverse stria. Males wilh wo pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of exlemal orbital spines. Basal segment of antennule (wilhout distal spines) ending at same level of eornea. distomesial spine small distinetly shorler than distolateral. Distomesial spine on first segment of antennal peduncle reaching end of second segment; distomesial spine on second segment not reaching end of third segment. Extensor border of merus of third maxilliped with small dislal spine. Fingers of cheliped without spines. Daetylus of walking legs short, $1 / 2$ propodus length, with movable spinules along entire ventral margin.

REMARKS, - M. alonsoi is elosely related to M. barangei sp. nov. from New Caledonia. Several features readily distinguish these wo species (see Remarks under M. barangei).

Size. - The males examined ranged between 2.7 and 6.3 mm ; femates between 2.2 and 5.3 mm ; ovigerous females from 2.2 mm ,

Distribution. - New Caledonia and Chesterfield 1slands. between 448 and 680 m .

Munida amblytes sp. nov.

Fig. 4
Material examined. - New Catedonia. Biocal : $\sin 46,570-610 \mathrm{~m}: 3$ \% 5.5 to $14.0 \mathrm{~mm} ; 1 \mathrm{ov} .98 .6 \mathrm{~mm}$ (MNHN Ga 2551 and USNM). - Sin 52, 540-600 m : 1 \% 14.2 mm (MNHN.Ga 3258). - Sin 54, t000 m: 1 ov. 오 12.7 mm (MNHN-Ga 2552).

Ciialcal 2 : $\sin 74,650 \mathrm{~m}: 1$ ㅇ 4.6 mm (MNHN-Ga 2553).
Smb $3: \sin 21,525 \mathrm{~m}: 1$ o 12.4 mm (MNHN-Ga 3259). - $\operatorname{Sin} 23,530 \mathrm{~m}: 2 \delta 16.0$ and 17.4 mm (MNHN Ga 2554. 2555).

Types. - The male of 16.0 mm from Smid 3, Stn 23 (MNHN-Ga 2554) has been selected is holotype; the other specimens are paratypes.

Ftg. 4. - Munida amblytes sp , nov., $\sigma 16.0 \mathrm{~mm}$, holotype from Stn 23 (Smib 3) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephatic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking
leg, lateral view.

Etymology. - From the Greck, amblytes, blunt, in reference to the absence of spines on the basal antcnnal segmenl. The name is considered as a substantive in apposition.

DESCRIPTION. - Carapace with few secondary striac. Intestinal region without scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic stemite with few short arcuate striac, anterior-mesially hollowed; fifth to seventh sternites smooth. Second abdominal lergite with a row of $8-10$ spines on anterior ridge. Second and third abdominal segments each with 1-2 transverse striae. Males with two pairs of gonopods on first and second abdominal segmenls. Eye large, maximum comeal diameter about $1 / 2$ length of anterior border of carapace between hases of external orbital spines. Basal segment of antennule (distal spines excluded) slightly excecding cornea, distomesial spinc shorter than distolateral. First segment of antenmal peduncle unarmed; distomesial spine on sccond segment distinctly exceeding anjennal peduncle. Extensor margin of merus of third maxilliped unarmed. Movable finger of cheliped with one basat and one distal spine on mesial border; fixed finger with a row of spincs along lateral margin. Dactylus of walking legs about $1 / 2$ length of propodus, with movable spinules along ventral margin, terminal third unarmed.

Remarks. - M. amblytes is close to M. prominula Baba from the Philippincs (BabA, 1988: Macpherson, 1993). The two species differ in the following constant fcalures:

- The third abdominal segment in M. prominula bears dorsal spines which are absent in M. amblytes.
- Both the distal two spines on the basal antennular segment arc well developed in M. prominula. whereas the distomesial spinc is very reduced in M. amblytes.
- M. prominula has the basal antennal segment with a dislomesial spine, which is absent in the new species.
- The movable finger of the cheliped bears several spines on the proximal half of the mesial horder in M. prominula, whercas M. anblyles has only one basal spinc.

SIZE. - The males examined runged belween 5.5 and 17.4 mm , females between 4.6 and 12.7 mm ; ovigerous females from 8.6 mm .

Distribution. - New Caledonia, between 525 and 1000 m .

Munida andrewi sp. nov.

Fig. 5
Material examined. - New Caledonia. Musorstom 4 : stm 198, $590 \mathrm{~m}: 1 \delta 7.8 \mathrm{~mm}$ (MNHN-Ga 2929).
Chesterfield Istands. MUSORSTOM $5: \sin 385,745-750 \mathrm{~m}: 1$ of $12.3 \mathrm{~mm} ; 2 \circ 12.1$ and 13.4 mm (MNHN-Ga 2933). - $\operatorname{Stn} 386,755-770 \mathrm{~m}: 7$ ठ 13.5 to 14.5 mm ; 3 ㅇ 14.0 to 16.4 mm (MNHN-Ga 2934, 2935). - $\mathrm{Stn} 387,650-$ $660 \mathrm{~m}: 1$ o $15.0 \mathrm{~mm} ; 1$ \& $14.4 \mathrm{~mm}(\mathrm{MNHN} \cdot \mathrm{Ga} 2936)$. - $\operatorname{Sin} 390.745-82.5 \mathrm{~m}: 14 \delta 12.11016 .4 \mathrm{~mm} ; 11$ q 12.6 to 17.4 mm (MNHN Ga 2937).
 $\operatorname{Stn} 14,650-660 \mathrm{~m}: 1$ ㅇ 8.0 mm (MNHN Ga 2931). - Stn $15.580-590 \mathrm{~m}: 1$ ov. 912.3 mm (MNHN-Ga 2932).

Types. - One male of 14.4 mm from Musorstom 5, Sin 386 (MNHN-Ga 2934) has been selecied as holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to Andrew 1. L. Payne, of the Sea Fisheries Research Institute. Cape Town, for his continuous support in my research work.

DESCRIPTION. - Carapace with pair of epigastric spines behind supraoculars. Transverse striae conspicuous. secondary striac nearly absent. Three spines in a row on each branchiocardiac boundary, anteriormost postcervical. larger than remainder. External orbilal spine pronounced, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Fourlh thoracic sternite with several short arcuate striac; fifth to seventh sternites smooth. Second, third and fourth abdominal segments each with 4 equal sized spincs on anterior transverse ridge; posterior ridge of fourth segment with strong median spine. Gonopods' in males absent from first abdominal segment. Eye dilated, maximum corncal diameter ahout $1 / 3$ length of anterior border of carapace between bases of external orbital
spines, Basal antennular segment (dislal spines excluded) not exceeding eye, distolateral spine larger than distomesial. Distomesial prolongation of first antennal segment well developed, reaching rostral tip; second segment with 2 distal small spines; third segment unarmed. Flexor margin of merus of third maxitliped with median spine; small distal spine on extensor border. Fingers of chetiped unarmed; fixed finger bifid distally. Dactylus of walking legs half as long as propodus, with small median spinules on ventral border.

REmarks. - Munida andrewi is closely related to M. incerta Henderson, 1888, from the 1ndian and Wcst Pacific waters (see above and BABA, 1988, 1990). Both species are casily differentiated by several characters:

- The earapace and abdomen have numerous secondary striae in M. incerta. These striac are nearly absent in the new species. The principal striac are very conspicuous in the new species. whereas in M. incerta they are quite similar to secondary striae.
- The ihoracic stemites bear numerous striac in M. incerta, these striac are practically absent in M. andrewi.
- The distomesial spine on the basal antennular segment is much longer that the distolateral in M. incerta; this spine is small and distinctly shorter than the distolateral spine in M. andrewi.
- The second antennal segment has one small median spine on the mesial border in M. incerta. This spine is always absent in M. andrewi.
- The chelipeds and walking legs are slender and less squamate in the new species than in M. incerta.

Size. - The males examined ranged between 7.8 and 17.3 mm . females between 8.0 and 17.4 mm ; ovigerous fcmales from 12.3 mm .

Distribution. - New Caledonia and Chesterfield 1stands. from 580 to 825 m .

Munida armilla sp. nov.

Figs 6, 65
Matertal examined.- New Catedonia. Biocal : $\operatorname{stn} 8,435 \mathrm{~m}: 1$ ov. 97.0 mm (MNHN-Ga 2556). -Stn 67 , $500 \mathrm{~m}: 1 \delta 11.6 \mathrm{~mm}$ (MNHN-Ga 3260).

MUSORSTOM 4 : stn $158,625 \mathrm{~m}: 1 \delta 8.0 \mathrm{~mm}$ (MNHN Ga 2557).
Chalcal 2: str 1, $500 \mathrm{~m}: 17$ § 10.6 to $14.7 \mathrm{~mm} ; 3$ ov. $\% 7.9$ to $13.8 \mathrm{~mm} ; 1$ \& 10.7 mm (MNHN.Ga 2558, 2559). $-\operatorname{Stn} 2.500 \mathrm{~m}: 4$ ס 7.7 to $11.4 \mathrm{~mm} ; 2 \mathrm{ov} .98 .0$ and 9.8 mm (MNHN-Ga 2560). - Stn 21, $500 \mathrm{~m}: 22$ 玉 6.4 to $11.3 \mathrm{~min} ; 8$ ov. 96.3 to $12.2 \mathrm{~mm} ; 296.1$ and 6.6 mm (MNHN. Ga 3261). - $\operatorname{Stn} 72,527 \mathrm{~m}: 33 \quad 66.8$ to 11.7 mm ; 15 ov . 97.1 to 9.3 mm ; 1 i 5.7 mm (MNHN-Ga 2561). - Stn 73, $573 \mathrm{~m}: 10$ ठ 5.8 to $11.1 \mathrm{~mm} ; 4$ ov. if 5.6 to $7.3 \mathrm{~nm} ; 1$ o 7.0 mm (MNHN-Ga 2562). - Stn $74,650 \mathrm{~m}: 32$ of 4.6 to $11.0 \mathrm{~mm} ; 5 \mathrm{ov}$. 96.6 to $7.3 \mathrm{~mm} ; 10$ \& 3.2 to

Smib $3: \sin \mathrm{I}, 520 \mathrm{~m}: 10$ of 5.5 to 13.5 mm ; 11 ov. 97.4 to 10.0 mm (MNHN-Ga 2565). - Stn $3,530 \mathrm{~m}: 8$ of 7.0 to $10.3 \mathrm{~mm} ; 2 \mathrm{ov}$. 98.5 and $10.7 \mathrm{~mm} ; 1$ o 7.2 mm (MNHN Ga 2566) - $\operatorname{Stn} 4,530 \mathrm{~m}: 2 \mathrm{O} 8.1$ and $8.6 \mathrm{~mm} ; 4 \mathrm{ov}$, 9 7.6 to 9.3 mm (MNHN.Ga 3263). - Stn 7, $505 \mathrm{~m}: 3 \mathrm{~J} 9.6$ 10 $13.4 \mathrm{~mm} ; 4$ ov. 98.0 to 12.0 mm (MNHN-Ga 3262). Sin $8,233 \mathrm{~m}$: I \$ 8.8 mm ; 1 ov. ㅇ 10.0 mm (MNHN.Ga 2567).

BIOGEOCAL : $\operatorname{stn} 307,470 \cdot 480 \mathrm{~m}: 1 \mathrm{ov} .96 .9 \mathrm{~mm}$ (MNHN.Ga 2568).
Smib 3: $\operatorname{stn} 2,530 \mathrm{ml}: 7$ of 7.1 to $10.2 \mathrm{~mm} ; 5$ ov. $97.11011 .9 \mathrm{~mm} ; 1$. 88.0 mm (MNHN-Ga 3267).
SM1B 4 : sin 34, $515 \mathrm{~m}: 7$ d 9.7 to $13.3 \mathrm{~mm} ; 2$ of 10.0 and 11.3 mm (MNHN Ga 2569). - $\operatorname{Stn} 36,530 \mathrm{~m}: 2$ of 7.4 and 10.5 mm (MNHN-Ga 3264). - Stn 37, $540 \mathrm{ml}: 8$ of 9.5 to $14.0 \mathrm{~mm} ; 6$ ¢ 9.1 to 15.8 mm (MNHN-Ga 3265). $\operatorname{Stn} 39,560 \mathrm{~m}: 9 \delta 9.4$ to $12.0 \mathrm{~mm} ; 699.7$ to 11.0 mm (MNHN Ga 2570 and USNM). - Stn $55,260 \mathrm{~m}: 8$ of 10.3 to $14.5 \mathrm{~mm} ; 3$ \& 10.6 to 11.0 mm (MNHN-Ga 3266).

Matthew and Hunter Istands. Volsmar: stn $5,700 \mathrm{~m}: 2 \delta 9.4$ and 10.5 mm (MNHN.Ga 2571). - Stn 51, $450 \mathrm{~m}: 1$ o $7.2 \mathrm{~mm} ; 2$ ov. 95.4 and $7.1 \mathrm{~mm} ; 1$ ¢ 3.4 mm (MNHN-Ga 2.572).

TYPES. - The male of 13.0 mm from Cifalcal 2, Stn 1 (MNHN-Ga 2558) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Latin, armilla, bracele, in reference to the colour patern. The name is considered as a substantive in apposition.

Fig. 5. - Munida andrewi sp. nov.. of 14.4 mm , holotype from $\operatorname{Sin} 386$ (MUSORSTOM 5) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephatic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view: g. dactylus of right first walking leg, lateral view.

Fig. 6. - Munida arnilla sp. nov., $\delta 13.0 \mathrm{~mm}$, holotype from $\operatorname{Stn} 1$ (Chalcal 2) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; \mathbf{g}, dactylus of right first walking
leg, lateral view.

DESCRIPTION. - Carapace with numerous scales on gastric and anterior branchial regions. Intestinal region with one scalc. External orbital spinc well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with a few short arcuate striae; fifth to seventh stemites without striac; lateral parts of seventh sternite with coarse granules. Second ahdominal tergite with a row of $7-10$ spines on anterior ridge. Sccond and third abdominal segments each with 1-2 transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea. distomesial spine slightly shorter than distolateral. First segment of antennal peduncle with distomesial spine reaching end of second segment; distomesial spine on second segment excceding antennal peduncle. Extensor margin of merus of third maxilliped unarmed. Movable finger of cheliped with one basal spine; fixed finger with a row of spines along lateral border. Dactylus of walking legs half as long as propodus, with movable spinules along entire ventral margin.

Colour, - Ground colour of carapace and abdominal segments orange, striac and spines reddish. Rostrum and supraocular spines reddish. Chelipeds and walking legs orange. Dactylus of walking legs whitish.

Remarks. - M. armilla is close to M. distiza sp. nov. from the Philippines, New Caledonia, Loyalty Islands, Matthew and Hunter Islands. The two species can be readily distinguished by constant characters (sec below under the Remarks of M. distiza).
M. armilla is also retated to M. armata Baba, from the Philippines (BabA. 1988). A comparison with specimens of the later species (sec MACPtIERSON, 1993, for the material of M. armata examined) showed that they can be differentiated by several aspects :

- The third abdominal segment usually has several spines in M. armata, unarmed in M. armilla.
- The dactylus of the walking legs is unarmed on the terminal third of the ventral border in M. armata, with spines along this margin in M. armilla.

SIZE. - The males examined ranged between 4.6 and 14.7 mm , females between 3.2 and 15.8 mm ; ovigerous females from .5 .4 mm .

Distribution. - New Caledonia, Matthew and Hunter 1slands, between 233 and 700 m .

Munida barangei sp. nov.
Fig. 7
Material examined. - New Caledonia. Musorstor $4: \sin 222,410-440 \mathrm{~m}: 1 \% 5.6 \mathrm{~mm}$ (MNHN-Ga 2573). - Sin 240. 475-500 m: $\mathrm{t} \delta 6.5 \mathrm{~mm}$ (MNHN-Ga 2574).

Chalical $2: \sin 25,425 \mathrm{~m}: 2 \% 6.6$ and 7.4 mm (MNHN Ga 2575,2576).
Smib $2: \operatorname{sin~} 10,490-495 \mathrm{~m}: 1$ © 7.2 mm (USNM).
SMIB $3: \sin 12,470 \mathrm{~m}: 3$ \& 6.6 and 7.2 mm (MNHN-Ga 2577 and USNM).
Types. - The male of 7.4 mm from Cifalcal 2, $\operatorname{Stn} 25$ (MNHN-Ga 2575) has been selected as holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to M. Barange of the 1nstituto de Ciencias del Mar, Barcelona, for his friendship and support in my work.

DESCRIPTION. - Carapace with secondary striae between main striae. Intestinal region without scales. Rostrum very long, nearly as long as remaining carapace. External orbital spine very short, mesial to level of lateral margin. Branchial margin with 5 small spines, fifth spine sometimes undiscemible. Thoracic sternites smooth, without striac. Second abdominal segment unarmed. Second to fifth segments each with 3-4 transverse continuous striae. Males with gonopods on first and second ahdominal scgments. Eye large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace between bases ol external orbital spines. Basal segment of
anlennule (distal spines excluded) reaching end of cornea, distolateral spine longer that dislomesial. First segment of antennal peduncle with distomesial spine reaching end of second segment; distomesial spine on second segment slightly exceeding third segment. Extensor margin of merus of third maxilliped unarmed. Fingers of cheliped unarmed; in large specimens 2 distal spines on fixed finger; small specimens with small spines along lateral and mesial borders of fixed and movable fingers, respectively. Dactylus of walking legs half as long as propodus with movable spinules along veniral margin, distal third unarmed.

REMARKS. - M. barangei is closely related to M. alonsoi sp. nov. from New Caledonia and Clesierfield lslands. They difler in the following aspects :

- The rostrum is as long as the remaining carapace in M. barangei, about $1 / 2$ in M. alonsoi.
- The external orbital spine in M. barangei is more distinctly reduced in size and more mesial to the level of the lateral margin of the carapace than in M. alonsoi.
- The second and thisd abdominal segments have 3-4 striae in M. barangei, one in M. alonsoi.
- The maximum comeal diameter is about $1 / 2$ the distance betwecn the exlernal orbital spines in M. barangei,
being aboul $1 / 3$ in M. alonsoi.
- The distomesial spine on the second annennal segment not exceeds the third antennal segment in M . alonsoi, whereas it exceeds this segment in M. barangei.
-The extensor margin of the merus of the third maxilliped is unarmed in M. barangei; with a small distal spine in M. alonsoi.
- The dactylus of the walking legs with spines along the entire ventral margin in M. alonsoi, whereas the lerminal lhird is unamed in M. barangei.

SIZE. - The males examined ranged belween 5.6 and 7.4 mm , no females were caught.
DISTRIBUTION. - New Caledonia, between 410 and 500 m .

Munida bellior Miyake \& Baba, 1967
Fig. 66
Munida bellior Miyake \& Baba, 1967b: 216, figs 3, 4. - Baba, 1988:82 (key), 90.
MATERIAL EXAMINED. - Loyally Islands. MUSORSTOM 6: $\operatorname{stn} 419.285 \mathrm{~m}: 1 \mathrm{ov} .912 .3 \mathrm{~mm}$ (MNHN-Ga 2578).

Chesterfietd Islands. Chalcal 1: sin $2,80-120 \mathrm{~m}: 1$ of 5.2 mm (MNHN Ga-3502).
Musarstom $5: \sin 315,330 \mathrm{~m}: 1$ of broken (MNHN-Ga 2579).
REMARKS. - According to MIYAKE and BABA (1967h) the colouration in preservative (formalin) is : the anterior portion of the carapace is coloured reddish brown, one broad V-slaped reddish-brown band on the posterior half of the carapace: the abdomen is reddish hrown; the chelipeds and walking legs have reddish brown bands.

The colour pattern of the specimens examined did nol conform to the descriplion of M1YAKE \& BABA. The specimens displayed red and white bands on the carapace, abdomen, chelipeds and walking legs. This colour partern is closer to that of M. elegantissima (sce BABA, 1969b) than to that of M. bellior. However, the morphological characters of the specimens agree quite well with the descriplion and illustrations of M. bellior (see also Remarks of M. elegantissima). These discrepancies suggest the need for the revision of the malerial on these 1wo species from the different localities in order to clarify the differences and variations in these two interesting species.

DISTRIBu'tion, - Sagami Bay and Philippines, 80-209 m. Loyalty Islands and Chesterfield Islands, 80-330 m.

Munida brachytes sp. nov.

Fig. 8
Material examined. - New Caledonia. Smb $5: \operatorname{stn} 86,320 \mathrm{~m}:$ I $\delta 3.7 \mathrm{~mm}$, hololype (MNHN-Ga 2580).

Fig. 7. - Munida barangei sp. nov.. 87.4 mm , holotype from $\operatorname{Sin} 25$ (CHAl.CAL 2) : a, carapace, dorsal view; b, sternal plastron; c, ventral vicw of cephatic region, showing antennular and antennal peduncles; d, right ihird maxilliped, lateral vicw; e, left cheliped, dorsal vicw; f, right first walking leg, latcral view: g, dactylus of right first walking leg, lateral view.

FiG 8. - Munida brachytes sp. nov., $\delta 3.7 \mathrm{~mm}$, holotype from $\operatorname{Stn} 86$ (SMIB 5) : a, carapace, dorsal view; b, sternal Flav!ron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, Tateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking le ${ }_{6}$, lateal view.

ETymology. - From the Greek, brachytes, smallness. The name is considered as a substantive in apposition.
DESCRIPTION. - Carapace wilh few secondary slriae, Inlestinal region with smail scales. External orbilal spine short, situaled on frontal margin near anterolaleral angle of carapace. Branchial margin with 5 small spines. Fourth thoracic sternile with few striae; fifth to seventh wilhoul striae. Abdominal segments unarmed. Second and third segments each with one iransverse stria. Two pairs of gonopods on first and second abdominal segments. Eye large, maximum corneal diameler aboul $1 / 2$ length of anlerior border of carapace belween bases of exlernal orbilal spines. Basal segment of anlennule (distal spines excluded) ending at same level of cornea, with 2 subequal distal spines. First segment of antennal peduncle with short dislomesial spine distinclly nol reaching end of second segment; distomesial spine on second segment slightly excceding third segment. Extensor margin of merus of hird maxilliped unaroned. Cheliped with a row of well developed spines along mesial and lateral borders of movable and fixed finger, respectively. Dactylus of walking legs slighlly shorler than propodus, wilh movable spinules along ventral margin.

RFMARKS. - The closest species of M. brachytes is M. pusiola Macpherson, 1993, from the Philippines (MACPHERSON, 1993). Both species are casily distinguishable by several aspects:

- The frontal margins are oblique in M. pusiola, iransverse in M. brachytes.
- The merus of the third maxilliped has one well developed distal spine on extensor border in M. pusiola, unarmed in M. brachytes.

Distribution. - New Caledonia, 320 m .

Munida callirrhoe sp. nov.

Figs 9, 91
MATERIAL EXAMINED. - New Caledonia. "Vauban" : stn 3, $390 \mathrm{~m}: 8$ ot 12.0 to $16.4 \mathrm{~mm} ; 9 \mathrm{ov}$. 911.3 to $13.6 \mathrm{~mm} ; 1$ o 12.4 mm (MNHN-Ga 2826). - Stn 4, $400 \mathrm{~m}: 16$ of 9.7 to $17.5 \mathrm{~mm} ; 12$ ov. 811.0 to $13.2 \mathrm{~mm} ; 2$ 우 11.8 and 13.3 mm (MNHN-Ga 2827). - Stn CB 34, $400 \mathrm{~m}: 2 \mathrm{ov}$. ᄋ 13.0 and 13.7 mm (MNHN Ga 2828).
 Stı 78, 445.450 m: 1 क 13.1 mm (MNHN Ga 2832). - $\operatorname{Sin} 105,330.335 \mathrm{~m}: 4$ क 8.4 to $12.2 \mathrm{~mm} ; 5 \mathrm{ov}$. \& 10.1 to 12.2 mm (MNHN Ga 2833). - $\operatorname{Sin} 108,335 \mathrm{~m}: 8$ ov. 99.3 to 10.8 mm (MNHN-Ga 2581, 2582).

MUSORSTOM 4: $\sin 170,480 \mathrm{~m}: 1 \delta 13.3 \mathrm{~mm}$ (MNHN.Ga2835). - $\operatorname{Sin} 179,475 \mathrm{~m}: 4 \delta 11.5$ to 14.0 mm (MNHNGa 2836). - Stn 180, $440 \mathrm{~m}: 8$ of 8.7 to $13.4 \mathrm{~mm} ; 1 \circ 10.0 \mathrm{~mm}$ (MNHN.Ga 2837). - Sin 195, $465 \mathrm{~m}: 8$ d 5.3 10 13.7 mm ; 8 ov. 910.4 to $13.6 \mathrm{~mm} ; 697.2$ to 9.5 mm (MNHN.Ga 2838). - $\operatorname{Sin} 235,405.415 \mathrm{~m}: 187.8 \mathrm{~mm}$ (MNHN Ga 2583). - $\operatorname{Stn} 246,410.420 \mathrm{~m}: 1$ क $9.5 \mathrm{mmj} ; 1 \mathrm{ov}$. $\circ 14.8 \mathrm{~mm}$ (USNM). - $\operatorname{Sin} 245,415-435 \mathrm{~m}: 6 \delta 10.01016 .5$ $\mathrm{mm} ; 4 \mathrm{ov} .912 .7$ to $15.3 \mathrm{~mm} ; 289.7$ and 13.2 mm (MNHN Ga 2839). - $\operatorname{Sin} 247,435-460 \mathrm{~m}: 489.5$ to $13.5 \mathrm{~mm} ; 2$ ov. $\$ 12.6$ and 13.3 mm (MNHN.Ga 2840). - $\operatorname{Sin} 248,380-385 \mathrm{~m}: 1 \% 10.4 \mathrm{~mm} ; 2$ ov. 912.1 and $12.2 \mathrm{~mm} ; 1$ of 9.5 mm (MNHN-Ga 2841).

Loyalty Istands. MUSORSTOM $6: \sin 408,380 \mathrm{~m}: 1 \delta 11.6 \mathrm{~mm} ; 2.99 .6$ and 13.0 mm (MNHN-Ga 2848). - Sin
 to $15.7 \mathrm{~mm} ; 10 \mathrm{ov}$. ᄋ 11.8 to $14.3 \mathrm{~mm} ; 2$ o 9.6 and 10.8 mm (MNHN-Ga 2585). - $\operatorname{Sin} 415,461 \mathrm{~m}: 2$ \% 11.2 and 15.0 $\mathrm{mma} ; 2$ \& 15.9 and 16.0 mm (MNHN. Ga 2586). - $\operatorname{Sin} 460,420 \mathrm{~m}: 1913.8 \mathrm{~mm}$ (MNHN-Ga 2587). - $\operatorname{Sin} 464,430 \mathrm{~m}$: 28 © 9.4 to $16.9 \mathrm{~mm} ; 13$ ov. $\& 11.0$ to $14.0 \mathrm{~mm} ; 14$ of 8.01013 .2 mm (MNHN.Ga 2588). - $\operatorname{Stn} 465,480 \mathrm{~m}: 13$ o 10.1 to 15.5 mm : 12 ov. \& 11.3 to $16.0 \mathrm{~mm} ; 7$ \% 10.01014 .0 mm (MNHN. Ga 2851). - Stl 467, $575 \mathrm{~m}: 3814.5$ to $15.5 \mathrm{~mm} ; 4$ ov. \& 13.3 to 15.8 mm (MNHN.Ga 2852).

Chesterfield Istands. Corall. $2: \operatorname{stn} 16,500 \mathrm{~m}: 397.4$ to 8.6 mm (MNHN Ga 2846). - Sin 17, $500 \mathrm{~m}: 1 \delta$ 9.0 mm (MNHN-Ga 2847).

Types. - One ovigerous female (10.0 mm) from Brocal, Sin 108 (MNHN-Ga 2581) has been selected as holotype; the olher specimens are paratypes.

Etymology. - The name refers to one of the Oceanids of the Greek mythology (Callitrhoë).
DESCRIPTION. - Carapace with numerous secondary striae between principal slriae, with two epigastric spines direcily behind supraoculars, each accompanied behind by smaller protogasiric spine (absent in several specimens).

Four spines in a row on dorsal midline : first anterior mesogastric, second directly behind cervical groove, third on cardiac transverse ridge, fourth on posterior ridge. Two-five more spines on each branchiocardiac boundary. External orbital spine pronounced, siluated at anterolateral angle of carapace. Branchial margin with $2-4$ spines. Thoracic sternites with numerous arcuate striac. Second, third and fourth abdominal segments each with 4 equal-sized spines on anterior transverse ridge; posterior ridge of fourth segment with median spine. Males with one pair of gonopods. Eye moderately large, maximum comeal diameter more than $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal antennular segment (distal spines excluded) exceeding cornea, distolateral spine shorter ihan distomesial. Distomesial prolongation of first antennal segment well developed, nearly reaching nostral tip; secend segment with one distomesial spine reaching end of antennal peduncle, with small spine on its base (not illustrated on Fig. 9); third segment unarmed. Merus of third maxilliped with one spine on flexor margin; one small distal spine on extensor border. Fixed finger of cheliped bifid distally, movable finger with small spine near tip (not illustrited on Fig. 9). Dactylus of walking legs weakly curved, half as long as prepodus, without spinules on ventral border.

Colour. - Ground colour of carapace and abdomen orange, yellow spots on epigastric and metagastric regions, center of cardiac region and center of second and third abdominal segments. Chelipeds and walking legs with transverse whitish and red bands; fingers of chelipeds reddish; dactylus of walking legs whitish.

REMARKS. - M. callirrhoe is closely related to M. marini sp. nov. from New Caledonia, Loyalty islands and Chesterfield Islands but hoth species differ in several respects (see the Remarks under that species).

Size. - Tre males examined ranged between 5.3 and 17.5 mm , females between 7.0 and 16.0 mm ; ovigerous lemates lrom 9.3 mm .

DISTRIBUTION. - New Calcdonia, Chesterfield Islands and Loyaliy Islands, from 335 to 575 m .

Munida callista sp. nov.

Figs 10,67
MATER1AL EXAMINED. -New Catedonia, "Vauban" $: \sin$ CB 37, 03.03.1977, 400 m:2 $\quad 14.2$ and 15.1 mm ; 1 \& 15.0 mm (MNHN Ga 2942).

BIOCAL : stn 67, 500-510 m : 2 o 7.9 and 10.0 mm ; 1 \& 4.4 mm (MNHN Ga 2938). - Stn 78, $445.450 \mathrm{~m}: 1$ o
18.1 mm ; I ov. 917.6 mm (MNHN.Ga 2939,2940). - $\operatorname{Sin} 82,440-460 \mathrm{~m}: 1$ o 18.5 mm (MNHN-Ga 2941).

Biogeocal: $\sin 308,510-590 \mathrm{~m}: 1$ \& 14.8 imm (MNHN-Ga 3268).
Bathus $3: \sin 814,23^{\circ} 48^{\prime} \mathrm{S}, 168^{\circ} 17^{\circ} \mathrm{E}, 444.530 \mathrm{~m}, 28.11 .1993: 1 \% 11,7 \mathrm{~mm}$ (MNHN-Ga 3556).
Chesterfield Istands. Musorstom $5: \operatorname{stn} 300.450 \mathrm{~m}: 1$ i 8.5 mm (MNHN-Ga 2943).
TYPES. - The male of 18.1 mm , from Biocal, Stı 78 (MNHN-Ga 2940) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Greek, kallistos, most beautifull, in reference of the nice coloration of the species.
DESCRIPTION. - Carapace with numerous secondary striac. Hepatic. anterior branchial and intestinal regions squamate. Posteriormost major stria medially interrupted. External orbilal spine well developed, situated on frontal border near anterolateral angle of carapace and exceeding sinus between rostrum and supraocular spines. Branchial margin with 3 spines. Fourth thoricic sternite with few short arcuate striac; fifth to seventh sterniles smooth. Abdominal segments unarmed. Two pairs of gonopods present on first and second abdominal segments. Eye large, maximum comeal diumeter about $1 / 2$ length of anterior border of carapace between bases of extemal orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea, with 2 subequal distal spines. Distomesial spine on first segment of antennal peduncle short, distinctly not reaching end of second segment; distomesial spine on second segment reaching end of antennal peduncle. Extensor margin of merus of third maxilliped unarmed. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial margin, respectively. Dictylus of walking legs about $1 / 2$ propodus length, with movalble spinuies along entire ventral margin.

FIG. 9. - Munida callirrhoe sp, nov, ov, \& 10.0 mm , holotype from Stn 108 (Brocal) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of ceplatic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 10. - Munida callista sp, nov., $\overline{0} 18.1 \mathrm{~mm}$, holotype from $\operatorname{Stn} 78$ (Biocal) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking
leg. lateral view.

Colour. - Carapace with wide rransverse yellow and purple bands. Epigastric region with a large purple band, followed by a yellow band; a purple band along cervical groove, followed by a yellow band. Second to fourth abdominal segments with a wide yellow band medially, purple laterally. Fingers of chelipeds red, tips whitish. Walking legs whitish.

Remarks. - M. callista is closely related to M. plexaura Macpherson \& de Saint Lauren1, 1991, from French Polynesia. The two species differ in several constant characters (sec Macpherson \& de Sainer Laurent, 1991 for the material examined of M. plexaura) :

- The dorsal suface of the carapace is distinctly more squamate in the new species. This difference is clearly distinguishable when comparing specimens of similar size of both species.
- The external orbital spine is large in the new species, exceeding the sinus between the rostrum and supraocular spines. In M. plexaura this spine is short and does not reach the sinus.
- The fingers of cheliped are mostly red in M. callista; whercas in M. plexatra only a red spot is present on the movable finger.

SIZE. - The males examined ranged between 7.9 and 18.5 mm , females between 4.4 and 17.6 mm ; ovigerous females from 17.6 mm .

Distribution. - New Caledonia and Chesterfield islands, between 400 and 590 m .

Munida clinata sp. nov.

Fig. 11
MATERIAL EXAMINFD. - Philippines. MUSORSTOM $1: \operatorname{stn} 57,96-107 \mathrm{~m}: 9$ § 3.5 10 $8.0 \mathrm{~mm} ; 5 \mathrm{ov}$, 93.7 to 7.3 mm (MNHN-Ga 2589).

MUSORSTOM 2 : $\operatorname{stn} 47,81.84 \mathrm{~m}: 1 \mathrm{ov} .94 .3 \mathrm{~mm}$ (MNHN.Ga 2590).
MUSORSTOM $3: \sin 117,92.97 \mathrm{~m}: 16$ © 2.6 to 3.0 mm ; 17 ¢ 2.4 to 4.5 mm (USNM). $-\operatorname{Stn} 121,73-84 \mathrm{~m}: 1$ © $4.0 \mathrm{~mm} ; 1$ ov \& $3.6 \mathrm{~mm} ; 1$ \& 3.2 mm (MNHN-Ga 2591). - Stn 134, $92.95 \mathrm{~m}: 1$ o $8.7 \mathrm{~mm} ; 3$ of 7.6 to 8.4 mm (MNHN.Ga 2592 and USNM). - Stn 137. $56 \mathrm{~m}: 6$ す 2.6 to $6.1 \mathrm{~mm} ; 1 \mathrm{ov}$. $94.9 \mathrm{~mm} ; 283.3$ and 4.5 mm (MNHN-Ga 2593).

New Caledonia. Lagon : stn 342, $55 \mathrm{~m}: 1 \delta 6.8 \mathrm{~mm} ; 1 \mathrm{ov} . \circ 4.7 \mathrm{~mm}$ (MNHN-Ga 2594), - $\operatorname{Stn} 364,49 \mathrm{~m}: 1$ ס $6.7 \mathrm{~mm}($ MNHN-Ga 2595). 一 $\operatorname{Stn} 378,70.72 \mathrm{~m}: 1 \delta 6.7 \mathrm{~mm}$ (MNHN Ga 2596). - $\operatorname{Stn} 391,65 \mathrm{~m}: 1 \delta 8.2 \mathrm{~m}(\mathrm{MNHN}-$ Ga 2597). - Stn 392, $80 \mathrm{~m}: 2$ of 5.3 and 6.8 mm (MNHN-Ga 2598, 2599). - $\operatorname{Sin} 583,44 \mathrm{~m}: 1 \mathrm{ov} .96 .3 \mathrm{~mm}$ (MNHNGa 2600). - Sin 836, $57 \mathrm{~m}: 2$ ov. 85.7 and 6.2 mm (MNHN Ga 2604). - $\operatorname{Stn} 837,28-36 \mathrm{~m}: 1$ © 7.7 mm (MNHN-Ga 2605). - $\operatorname{Sin} 933,90.100 \mathrm{~m}: 1$ o $5.1 \mathrm{~mm} ; 1 \mathrm{ov}$. 95.9 mm (MNHN-Ga 2606). - $\operatorname{Sin} 937,50.55 \mathrm{~m}: 2$ of 7.8 and 8.0 mm (MNHN-Ga 2607). - Stn 1140, $44 \mathrm{~m}: 2$ © 7.2 and 7.5 mm (MNHN. Ga 2615).

MUSORSTOM 4 : $\operatorname{stn} 150,110 \mathrm{~m}: 1 \mathrm{ov}$. 97.4 mm (MNHN Ga 2601). - Stn 204, $120 \mathrm{~m}: 1 \mathrm{ov}$. 96.2 mm (MNHN.Ga 2602).

CIIALCAL 2: $\operatorname{stn} 80,80-160 \mathrm{~m}: 4$ © 3.9 to $10.6 \mathrm{~mm} ; 3$ ov. \& 5.0 to $8.6 \mathrm{~mm} ; 2$ \& 3.9 and 5.7 mm (MNHN-Ga 2603 and USNM).

Smib 5: $\operatorname{stn} 81,110 \mathrm{~m}: 1 \delta 10.0 \mathrm{~mm}$ (MNHN-Ga 2610). - $\operatorname{Stn} 82,155 \mathrm{~m}: 1 \mathrm{ov}$. 98.9 mm (MNHN.Ga 2611). Sin $96,245 \mathrm{~m}: 1$ ठ $9.5 \mathrm{~mm}(\mathrm{MNHN}$ Ga 2612). - Stn $99,58 \mathrm{~m}: 1$ ठ $6.8 \mathrm{~mm} ; 3 \mathrm{ov}$. 96.7 to 7.0 mm (MNHN Ga 2613). —Stn 100, $120 \mathrm{~m}: 4$ d 5.8 to $8.4 \mathrm{~mm} ; 9 \mathrm{ov}, 94.7$ to 7.7 mm (MNHN.Ga 2614).

Chesterfietd Islands. Chalcal 1: $\operatorname{stn} 2.80 .120 \mathrm{~m}: 2$ of 5.6 and $6.6 \mathrm{~mm} ; 1$ ov. $\$ 5.8 \mathrm{~mm} ; 1 \S 6.5 \mathrm{mmn}$ (MNHNGa 2616). - Stn 43, $78 \mathrm{~m}: 1$ of 7.8 mm (MNHN Ga 2617). - Stn $55,55 \mathrm{~m}: 1$ © 5.5 mm (MNHN•Ga 2618). - Stn 56 , $60 \mathrm{~m}: 1 \delta 6.2 \mathrm{~mm} ; 1 \mathrm{ov}$. 오 5.2 mm (MNHN-Ga 2619).

Corall 2: $\operatorname{smn} 3,58 \mathrm{~m}: 1 \mathrm{ov}$. 87.3 mm (MNHN-Ga 2608). - Stn $93,58-60 \mathrm{~m}: 1 \% 6.3 \mathrm{~mm} ; 1 \mathrm{ov}$. \& 6.2 mm (MNHN-Ga 2609).

TYPES. - The male of 6.8 mm , from Lagon. Stn 392 (MNHN-Ga 2598) has been selected as holotype: the other specimens are paratypes.

Etymology, - From the Latin, clinatus, slope, in reference to the frontal margins of the carapace.
DESCRIPTton. - Carapace with few secondary striac. Intestinal region without scales. Frontal margin distinctly oblique. External orbital spine well developed, situated on frontal border near anterolateral angle of
carapace. Branchial margin with 5 spines. Fourth thoracic sternite with several short arcuate striae; filth 10 seventh without striae. Abdominal segments unarmed. Second and third segments cach with 2-4 transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of earapace between bases of external orbital spines. Basal segment of

FIG. 1t. - Munida clinata sp. nov., ठ 6.8 mm , hototype from $\operatorname{Stn} 392$ (Lagon) : a, carapace, dorsat view; b, sternat plastron; c. ventrat view of cephalic region, showing antennutar and antennat peduncles; \mathbf{d}, right third inaxilliped, lateral view; e, right cheliped, dorsal view; f, right first watking leg, lateral view; g, dactylus of right first walking
teg, lateral view.
antennule (distal spines excluded) slightly exceeding cornea, with 2 subequal dislal spines. First segmenl of antennal peduncle with distomesial spine reaching end of second segment; dislomesial spine on second segment slightly exceeding antennal peduncle. Extensor border of merus of third maxilliped with distal spine. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial margin, respectively. Dactylus of walking legs $2 / 3$ propodus length, with movable spinules along entire ventral margin.

Remarks. - M. clinata is closely related lo M. olivarae sp. nov. from New Caledonia, Loyally lslands, Matthew and Hunter lslands and M. roshanei Tirmizi, 1966, from the Red Sea, Gulf of Aden and Gulf of Oman (Tirmizi. 1966). The three species are casity differentiable by several characters (see Remarks under M. olivarae). The specimens of M. roshanei cited by BABA (1988) in the Philippines, probably belong to M. clinata.

SIZF. - The males examined ranged between 2.6 and 10.6 mm , females between 2.4 and 8.6 mm ; ovigerous females from 3.6 mm .

DISTRIBUTION. - Philippines, New Caledonia and Chesteffield Islands, between 28 and 245 m .

Munida cornuta sp. nov.

Figs 12, 13c
Material examined. - Kiribati. $600 \mathrm{~m}, 04.1987: 1 \delta 11.7 \mathrm{~mm}$, holotype (MNHN-Ga 2620).
ETymology. - From the Latin, cornus, horn, in reference to the rostrum.
DESCRIPTtON. - Carapace with secondary striae. Intestinal region without scales. External orbital spine short situaled al anterolateral angle of carapace. Branchial margin with 5 spines. Fouth thoracic sternite with few shorl arcuate striae; fiffll to seventh sternites smooth. Second abdominal icrgite wilh a row of 9 spines on anlerior ridge. Second and third segments each with 3 transverse striac. Two pairs of gonopods present on first and second abdominal segmens. Eye large, maximum corneal diameter about $1 / 2$ length of anierior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea, with 2 subequal distal spines. Firsl segment of antenual peduncle with short distomesial spine reaching end of second segment; distomesial spine on second segment exceeding end of antennal peduncle. Extensor border of merus of third maxilliped unarmed. Cheliped with movable finger unarmed; fixed finger with one subdistal spine. Dactylus of walking legs $3 / 4$ length of propodus, with movable spinules along ventral margin, terminal third unarmed.

Remarks. - M. cornuta is closely related to M. conpressa Baba from the Philippines (BABA, 1988). These species have the rostrum compressed laterally. However a comparison with specimens from the Philippines (see MACPILLRSON, 1993) shows thal they differ in the following constant characters:

- The rostrum is shonter and more upwardly directed in M. cornuta than in M. compressa.
- The carapace and abdominal segments have uumerous secondary striac in the new species. In M. compressa these striae are scarce and the second abdominal segment has only one transverse siria.
- The terminal third of the daclylus of the walking legs is unarmed in M. cornuta, whereas in M. compressa the spines are along the entire ventral margin. On the other hand, the dactylus of the walking legs of M. cornuta is less curved than in the other species.
M. cornuta is also close to Munida sp. from New Caledonia and Loyalty lslands (see below).

Distribution. - Kiribati. 600 m .

Munida distiza sp. nov.

Figs 14, 68, 69
MATERIAL EXAMINED. - Phitippines. Musorstom 1: \sin 62, 179-194 m: 1 o 16.6 mm (MNHN-Ga 2621). $\mathrm{Stn} 63,191-195 \mathrm{~m}: 1$ § 13.7 m (MNHN-Ga 2622).

Fig, 12. - Munidá cornuta sp. nov., $\delta 11.7 \mathrm{~mm}$, holotype from Kiribati ; a, carapace, dorsal view; b, sternal plastron; c. ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral vicw; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view,
 11.1 and 11.6 mm (MNHN-Ga 2624).

New Caledonia. Blocal: stn 84, $150-210 \mathrm{~m}: 1 \mathrm{ov} .910 .5 \mathrm{~mm}$ (MNHN.Ga 3269).
Chialcal $2: \operatorname{stn} 19,271 \mathrm{~m}: 2 \delta 9.4$ and $13.9 \mathrm{~mm} ; 1$ ㅇ 9.7 mm (MNHN-Ga 2625, 2626). - Stn 20, 230-300 m: $1 \mathrm{ov} . \% 13.8 \mathrm{~mm}$ (MNHN-Ga 2627).

Sm1B 4 : stt 44, $300 \mathrm{~m}: 198.4 \mathrm{~mm}$ (USNM).
Loyalty Istands. $21.02 .1977,400 \mathrm{~m}: 1$ đ 18.7 mm (MNHN-Ga 3270).
MUSORSTOM $6: \sin 419,283 \mathrm{~m}: 1 \delta 8.2 \mathrm{~mm}(M N H N-G a 2628) .-\operatorname{Sin} 480,380 \mathrm{~m}: 1910.0 \mathrm{~mm}$ (USNM).
Matthew and Hunter 1skands. Volsmar : $\operatorname{stn} 7,400 \mathrm{~m}: 1$ ot 11.6 mm (MNHN-Ga 2631).
TYPES. - The male of 13.9 mm from Chalcal. 2, Stn 19 (MNHN-Ga 2625) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Greek, stizo, stain, in reference to the large red spot on the sternal plastron.
DESCRIPTION. - Carapace with numerous secondary striac. Intestinal with one scale. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth and fifth thoracic sternites with some short arcuate striac; sixth and seventh sternites smooth; lateral parts of seventh sternite with coarse granules. Sccond abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second and third segments each with $4-5$ transverse striac. Males with two pairs of gonopods on first and second abdominal segmens. Eye moderately large, maximum comeal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) slightly exceeding end of cornea, distomesial spine longer than distolateral. Distomesial spine on first segment of antennal peduncle excecding second segment; distomesial spine on second segment distinctly exceeding antennal peduncle. Extensor border of merus of third maxilliped unarmed. Movable and fixed lingers of cheliped with a row of spines along mesial and lateral borders, respectively. Dactylus of walking legs about half as long as propodus, with movable spinules along entire ventral margin.

Fig. 13. - Anlerior part of carapace, lateral view : a, Murida rhodonia sp. nov., of 11.5 mm, holotype from Sin 198 (Musorstom 4); b, Munida sp., ס $10.5 \mathrm{~mm}, \operatorname{Sin} 239$ (Musors $\operatorname{com} 4$); c, Munida cornuta sp. nov., $\delta 11.7 \mathrm{~mm}$, hololype from Kiribati.

Fig. 14, - Munida distiza sp. nov,. of 13.9 mm , holotype from $\operatorname{Sin} 19$ (Chal.CAL 2) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view: g, dactylus of right first walking
leg, lateral view.

COLOUR. - Ground colour of carapace and abdominal segments orange, striac reddish. Rostrum and supraocular spines orange. Chelipeds and walking legs with transverse whitish and orange bands. Merus of cheliped with red spot on distolateral portion. Distal part of chelipeds and dactylus of walking legs whitish. Thoracic sternites red.

Remarks. - M. distiza is closely related to M. armilla sp. nov, from New Caledonia, Mathew and Hunter 1slands. They differ in the following aspects:

- The second and third abdominal segments have more transverse striae in M. distiza than in M. armilla.
- The distomesial spine on the basal anennular segment is longer than the distolateral in M. distiza. whereas is shorter in M. armilla.
- The movable finger of the cheliped in M. distiza has one a row of spines along the mesial margin, whereas M. armilla has only one spine near its base.
- The colour pattems are different in bott species (see Figs 65 and 68, 69).
M. distiza is also close to M. gutata sp. nov. from New Caledonia and Loyalty 1slands. The wo species can be casily distinguished by several constant characters (see below under the Remarks of M. guttata).

SIzE. - The males examined ranged between 8.2 and 18.7 mm , females between 8.4 and 16.0 mm ; ovigerous females from 10.5 mm .

Distribution. - Plilippines. New Caledonia. Loyalty 1slands, Mattiew and Hunter 1slands, between 170 and 400 m .

Munida eclepsis sp. nov.

Figs 15,70
MATERIAL EXAM1NED. - New Caledonia. Smib $3: \sin 1.520 \mathrm{~m}: 2 \delta 5.2$ and 6.3 mm , paratypes (MNHN. Ga 3271).

Smib 4 : sul 34, $515 \mathrm{~m}: \mathrm{t}$ ㅇ 11.0 mm , hotolype (MNHN . Ga 2632).
Etymology. - From the Greek, ectepsis, surprise, in reference to the unexpected number of new species in the area. The name is considered as a substantive in apposition.

DESCRIPTION. - Carapace with few secoudary striac. Intestinal region with one scale. Externat orbilal spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic stemite with few short arcuate striac; fifth 10 seventh sternites smooth. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second and third segments each with 1-2 ransverse striac. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum comeal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (disial spines excluded) reaching end of cornea, with distomesial spine slightly shorter than distolateral. Distomesial spine on first segment of antennal peduncle reaching end of second segment; distomesial spine on second segment exceeding antennal peduncle. Extensor margin of merus of third maxilliped unarmed. Cheliped with movable finger bearing one mesial spine near its base; fixed finger with a row of spines along lateral border. Dactylus of walking legs half as long as propodus, with movable spinules along entire ventral margin.

COLOUR. - Ground cotour of carapace and abdominal segments reddish, striae dark red. Rostrum, supraocular spines and external orbitat spines dark red. Chelipeds and walking legs with whitish and reddish bands. Proximal half of fingers of chelipeds whitish. tips dark red. Dactytus of walking legs whitish.

Remarks. - M. eclepsis is closely related to M. militaris Henderson. 1885. from Fiji and New Caledonia (see below).

Distribution. - New Catedonia, $515-520 \mathrm{~m}$.

FIG. 15. - Munida eclepsis sp. nov., ㅇ 11.0 mm, holotype from $\operatorname{Sin} 34$ (Smib 4): a, carapace, dorsal view; b, sternal plastron; c , ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e , right cheliped, dorsal view; \mathbf{f}, left first walking leg, lateral view; g. daclylus of left first walking leg,
lateral view.

Munida elachia sp. nov.

Figs 16, 71
Material examined. - New Catedonia. Chalcal 2: $\sin 73,573 \mathrm{~m}: 2 \delta 4.7$ and $6.5 \mathrm{~mm} ; 294.4$ and 5.0 mm (MNHN-Ga 2633, 2634, USNM). - Sin 74, $650 \mathrm{~m}: 194.3 \mathrm{~mm}$ (MNHN.Ga 2635).

Types. - The female of 4.4 mm from Chalcal 2, Sin 73 (MNHN-Ga 2633) has been selected as hololype; the other specimens are paratypes.

Etymology. - From the Greek, elachys, small.
DESCRIPTION. - Carapace wilh few secondary striac. Intestinal region without scales. External orbital spine shorl, situated at anterolaleral angle of carapace. Branchial margin with 5 small spines. Thoracic sternites smooth, without striae. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second and third segments each with one transverse stria. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace belween bases of external orbital spines. Basal segmenl of anlennule (distal spines excluded) slighlly exceeding end of cornca, with 2 subequal distal spines. Distomesial spine on first segment of antennal peduncte dislinctly not reaching end of second segment; distomesial spine on second segment exceeding third segment. Extensor margin of merus of third maxilliped unarmed. Cheliped with movable finger bearing one mesial spine near its base; fixed finger with a row of spines along lateral border. Dactylus of walking legs about $2 / 3$ propodus lenglh, with movable spinules along entire ventral margin.

Colour, - Ground colour of carapace and abdominal segments orange, anlerior half of carapace reddish. Rostrum and supraocular spines red; distal half of rosirum white. iip red. Chelipeds and walking legs with transverse white and orange bands. Fingers of chelipeds and daclylus of watking legs whitish.

Remarks. - M. elachia is closely related to M. thoe sp. nov. from New Caledonia. Matthew and Hunter Islands, and M. semoni Ortmann, 1894, from Indonesia and New Caledonia (see helow for the differences between these species).

SIZE. - The males examined measured 4.7 and 6.5 mm , females ranged between 4.3 and 5.0 mm ; no ovigerous females were caught.

Distribution. - Ncw Caledonia, between 573 and 650 m .

Munida elegantissima de Man, 1902

Munida elegantissima-BABA, 1988:82 (key), 94 (references); 1989: 1.31.
MATERIAL EXAMINED. - Philippines. Musorstom 1: sm 57, $96.107 \mathrm{~m}: 1$ © $4.9 \mathrm{~mm} ; 2$ ov. 97.2 and 7.3 mm; 1 \& $2.6 \mathrm{~mm}(\mathrm{MNHN} . \mathrm{Ga}$ 2636). - Sin 62, 179-194 m:l 93.7 mm (MNHN-Ga 2637).

MUSORS'OM $2: \operatorname{stn} 8,85.90 \mathrm{~m}: 1$ of 8.4 mm ; 1 ov. 99.3 min (MNHN.Ga 2638). - Sin $47,81-84 \mathrm{~m}: 1$ of 5.3 mm ; 2 ov . 99.0 and 9.8 mm (USNM).

MUSORSTOM $3: \operatorname{stn} 117,92-97 \mathrm{~m}: 1 \delta 4.5 \mathrm{~mm} ; 1$ ㅇ 2.9 mm (MNHN.Ga 2640).
New Caledonia. Lagon : $\operatorname{stn} 640,50-80 \mathrm{~m}: \mathrm{l}$ ov. 99.3 mm (MNHN Ga 2642).
Bettona Istands. Corall 1 : withont positiont: I ov. $\$ 12.2 \mathrm{~mm}$ (MNHN Ga 2641).
Remarks. - Munida elegantissima de Man, 1902, and M. bellior Miyake \& Baba. 1967, are the unique among known species of the genus in having epipods on the pereiopods and a distal spine on the flexor border of the carpus of the third maxilliped. Munida bellior is characterized by the dorsal surface of the carapace bearing long setac and 4 spinclets on the ventral margin of the propodus of the first walking leg. In M. elegamissima the carapace has long setae and the propodus of the first walking leg has $8-9$ venlral spines. From the descriptions and illustrations provided by MIYAKE \& BABA (1967b) and BABA (1969b), other differences between both species are :
(1) He presence of a distolateral spine on the third segment of the antennal peduncle and (2) a dislal spine on the extensor border of the merus of the third maxilliped in M. elegantissima, both spines are absent in M. bellior.

The specimens collected in the Philippines, Bellona 1slands and New Caledonia have the carapace with long setae and the number of ventral spines on the propodus of the first watking legs ranges between 4 and 6 . Considering that in all the specimens examined the spinulation of the antennal peduncle and the third maxilliped are constant and agree with the definition of M. elegantissima, 1 consider that these characters are specilic and can be used to differentiate both species.

The colour pattern is also different in both species (see Remarks for M. bellior).
SIZE. - The males examined ranged belween 4.5 and 8.4 mm , females between 2.9 and 12.2 mm ; ovigerous females from 7.2 mm .

Distribution. - Previously known from Eastern Indian Occan. Malay Archipelago, Indonesia, Philippines, Japan and Western and Eastern Australia, between 20 and 200 m (BABA, 1988). The specimens cxamined here were collected in the Philippines, New Caledonia and Bellona Islands, between 50 and 194 m .

Munida eminens Baba, 1988
Fig. 72
Munida eminens Baba, 1988 : 82 (key), 95, fig 35.
Material examined. - Plilippines. Musorstom $3: \operatorname{stn} 116,804-812 \mathrm{~m}: 1$ ot 11.1 mm (MNHN-Ga 2643).
Indonesia. CORINDON $2: \operatorname{stn} 240,675 \mathrm{~m}: 2$ \& 12.3 and 17.1 mm (MNHN-Ga 2644).
New Caledonia. Biocal : sta 31, $850 \mathrm{~m}: 2$ o 12.6 mm and 15.0 mm (MNHN-Ga 2645). - Stn 32, $825 \mathrm{~m}: 1$ if $9.3 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2646)$. $\operatorname{Stn} 75,825-860 \mathrm{~m}: 1 \delta 7.0 \mathrm{~mm} ; 194.8 \mathrm{~mm}$ (MNHN Ga 2648).

BIOGEOCAL: SIn $232,760-790 \mathrm{~m}: 1 \% 10.0 \mathrm{~mm} ; 1$ ov. $917.8 \mathrm{~mm} ; 1$ i 6.0 mm (USNM).
Loyalty Islands. MuSORSTOM $6: \operatorname{stn} 427,800 \mathrm{~m}: 1$ o $7.4 \mathrm{~mm} ; 1$ ov. 916.4 mm (MNHN-Ga 2651). - Stn 438, $780 \mathrm{~m}: 5$ or 7.8 to $14.7 \mathrm{~mm} ; 2$ ov. 914.4 and 17.3 mm (MNHN-Ga 2652). - Stn $488,800 \mathrm{~m}: 1 \mathrm{q} .6 .0 \mathrm{~mm}$ (MNHN-Ga 2653).

Chesterfield Istands. Musorstom $5: \operatorname{stn} 323,970 \mathrm{~m}: 4 \delta 9.3$ to $10.0 \mathrm{~mm} ; 287.4$ and 11.7 mrn (USNM). Stn 324, $970 \mathrm{~m}: 1$ ठ $10.6 \mathrm{~mm} ; 287.0$ and 9.2 mm (MNHN-Ga 2656). - Stir $390,745-825 \mathrm{~m}: 8$ of 12.0 to 18.1 mm ; 11 \& 7.4 to 19.4 mm (MNHN-Ga 2657).

Colour. - Ground colour of carapace and abdomen orange. Rosirum and spines on carapace and abdomen reddish. Chelipeds and walking legs with red and whilish bands; terminal part of fingers of chelipeds and dactylus of walking legs red.

REMARKS. - The specimens examined agree quite well with the original description and figures provided by BABA (1988). Usually, the specimens examined have 2 branchiocardiac spines on each side (3 in the types) and the second cardiac spine is absent (present in the types).

SIZE. - The males examined ranged between 7.0 and 18.1 mm . females between 4.8 and 19.4 mm ; ovigerous females from 14.4 mm .

Distribution. - The matcriat examined has been collected in the Philippines, Indonesia. New Caledonia, Loyalty 1slands and Chesterfield 1slands, between 675 and 970 m . BABA (1988) described the species from specimens captured in the Philippines, between 564 and 686 m .

Munida erato sp. nov.

Fig. 17
Material examined. - New Caledonia. "Vauban" : $\sin 79,400 \mathrm{~m}: 1 \delta 14.0 \mathrm{~mm}$, holotype (MNHN-
2658). Ga 2658).

Chesterfield Islands. Musorstom $5: \operatorname{stn} 354,420-450 \mathrm{~m}: 1 \& 8.3 \mathrm{~mm}$. paralype (MNHN.Ga 2659).
Etymology. - The name refers to one of the Nercids of Greek mythology (Erato).

Fig. 16. - Munida elachia sp, nov., 94.4 mm , holotype from $\operatorname{Stn} 73$ (Chalcal 2) : a. carapace, dorsal view; b, sternal plastron; c, ventral vicw of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped. lateral view; e, right cheliped, dorsal view; f, left first walking leg. lateral view; g, dactylus of left first walking leg, lateral view.

FIG. 17. - Munida erato sp. nov., of 14.0 mm , holotype from $\operatorname{Stn} 79$ (${ }^{*} V a u b a n^{\prime \prime}$) : a, carapacc, dorsal view; b, slernal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg,
lateral view,

DESCRIPTION. - Carapace wilh numerous secondary striae between principal striae. Intestinal region with small scales. External orbital spine well developed, situated at anterolaleral angle of carapace. Branchial margin with 4 spines quite similar in size. Fourth thoracic sternite wilh some short arcuate striac; fiffh to seventh sternites smooth. Sccond abdominal segment with 4 pairs of spines on anlerior ridge. Second to fourth abdominal segmenis cach with 4-6 continuous striac. Males with two pairs of gonopods on first and second abdominal segments. Eyc moderately small, maximum corncal diameter about I/B length of anterior border of carapace between bases of external orhital spines. Basal segment of antennule (distal spines excluded) distinctly exceeding comea, with 2 subequal distal spines. Distomesial spine on first segmenl of antennal peduncle slightly exceeding second segmenl; distomesial spine on second segment exceeding antennal peduncle. Extensor margin of merus of third maxilliped unarmed. Fixed finger of cheliped with a row of dorsolateral spines; movahle finger with one proximal and one distal spine on mesial border. Dactylus of walking legs $1 / 2$ propodus length, with movable spinules along entirc ventral margin.

REMARKS. - M. erato resembles M. zebra sp. nov. from New Calcdonia and Loyalty Islands. The Iwo species differ in several constant characters (see Remarks under lhat species).

Distribution. - New Caledonia and Chesterfield Islands. $400-4.50 \mathrm{~m}$.

Munida gordoae sp. nov.

Fig. 18
Material examined. - New Caledonia. Chal.cal $2: \operatorname{stn} 21,500 \mathrm{~m}: 1$ ㅇ 5.7 mm (MNHN.Ga 3272). - Stn $84,170 \mathrm{~m}: 1$ ठ 3.2 mm (MNHN-Ga 2660).

Loyalty lslands. Musorstom $6: \operatorname{stn} 401,270 \mathrm{~m}: 1 \delta 3.8 \mathrm{~mm}$ (MNHN-Ga 2662). - Stn 418, $283 \mathrm{~m}: 1 \delta 4.9$ mm (MNHN Ga 2663). - Stn $473,236 \mathrm{~m}: 1 \AA 5.6 \mathrm{~mm}$ (MNHN.Ga 2664).

Mathew and Hunter Islands. Volsmar : sta $48,200 \mathrm{~m}: 1 \delta 5.0 \mathrm{~mm} ; 1$ ov, $94.3 \mathrm{~mm} ; 393.7 \mathrm{to} 5.9 \mathrm{~mm}$ (MNHN.Ga 2665).

Chesterfield Islands. Clatcal $1: \sin 2,80.120 \mathrm{~m}: 3 \delta 3.2$ to $4.3 \mathrm{~mm} ; 1 \mathrm{ov} .95 .6 \mathrm{~mm} ; 193.5 \mathrm{~mm}$ (MNHNGa 2666). - Sta 3, 100-150 m: 156.0 mm (USNM). - $\operatorname{Stn} 30,150-180 \mathrm{~m}: 186.4 \mathrm{~mm}$ (MNHN-Ga 2668).

MUSORSTOM $5: \sin 348,260 \mathrm{~m}: 3$ \% 2.4 to $4.0 \mathrm{~mm} ; 1$ ov. 85.9 mm (MNHN.Ga 2669).
Corall 2 : stn 141, $95 \mathrm{~m}: 1$ © 6.5 mm (MNHN Ga 2661).
Types. - Onc male of 6.5 mm from Corail 2, Stn 141 (MNHN-Ga 2661) has been sclected as holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to A. Gordoa from the Instituto de Ciencias del Mar. Barcelona. for his friendship and support in my work.

DESCRIPTION. - Carapace with few secondary striae between principal striae. Intestinal region with one scale. External orhital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Fourth thoracic slernite with several short arcuate striae; fifth lo sevenlh smooth: lateral parts of seventh stemite wilh numerous coarse granules. Sccond abdominal segment with a row of 4 pairs of spines on anterior ridge. Sccond abdominal segment wilh 4 pairs of spines on anterior ridge. Second and third abdominal segments cach with one transverse stria. Males with two pairs of gonopods on firsl and second abdominal segments. Eye moderately large, maximum corncal diameter about $I / 3$ lengit of anterior border of carapace between bases of external orbilal spines. Basal segment of antennulc (distal spines excluded) distinctly exceeding cornea, dislomesial spine shorter than dislolateral. Distomesial spine on first scgment of antennal peduncle reaching end of second segment; distomesial spine on second segment exceeding third segment. Extensor border of merus of third maxilliped unarmed. Cheliped with several spines on proximal half of mesial and lateral borders of movahle and fixed finger, respectively, two subterminal spines on each finger. Dactylus of walking legs $2 / 3$ propodus length, with movable spinules along entire ventral margin.

REMARKS. - M. gordoae is closely related to M. leptosyne sp. nov., from Loyalty Islands and Chesterfield Islands described below (sec Remarks under that species).

Fig. 18. - Munida gordoae sp. nov., $\delta 6.5 \mathrm{~mm}$, holotype from Stn 141 (CORALL 2) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, left cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; g, dactylus of right first walking leg,
lateral view.

SizE. - The males examined ranged belween 2.4 and 6.5 mm , females beiween 3.5 and 5.9 mm ; ovigerous females from 4.0 mm .

Distribution. - New Caledonia, Loyalty Islands, Chesterfield and Mathew and Hunler Islands, between 80 and 283 m .

Munida gracilis Henderson, 1885

Fig. 19
Munida gracilis Henderson, $1885: 412 ; 1888$: 143, pl. 15, fig. 4.
Material examined. - New Zealand. "Challenger" : stn $166,23.06 .1874,38^{\circ} 50^{\circ} \mathrm{S}, 169^{\circ} 20^{\circ} \mathrm{E} .503 \mathrm{~m}: 1$ o $5.5 \mathrm{~mm} ; 196.8 \mathrm{~mm}$, types (BM).

Remarks. - This species has been only cited off New Zealand. In order to improve the knowledge of this interesling species, and considering the proximily of the type locality with New Caledonia, a bricf diagnosis and an illustration is provided.

DESCRIPTION. - Carapace wilh few secondary striae, pair of protogastric spines behind largest epigastric spines. Fronlal margin oblique. Branchial margin with 5 spines. Fourth thoracic sternite wilh few short siriae, fifth to sevenih smooth. Abdominal tergites with 8 spines on second segment, 4 spines on 1hird segment. Second and third segments with 1 and 2 continuous slriae, respectively. Eye large, maximum corneal diameler aboul $1 / 3$ length of anlerior border of carapace belween bases of exlernal orbital spines. Basal segment of anlennular peduncle (distal spines excluded) reaching end of cornea; distomesial spine longer than dislolaleral. Dislomesial spine on basal segment of antemal peduncle reaching end of second segment. Distomesial spine on second segment exceeding peduncle. Merus of third maxilliped with extensor margin unarned. Cheliped with movable finger armed with one basal and one distat spinc; fixed finger with one dislal spinc. Dactylus of walking legs stightly shorler than propodus, terminal lhird of ventral margin unarmed.

DISTRIBUTION. - New Zealand, 503 m .

Munida guttata sp. nov.

Figs 20, 73
Material examined. - New Caledonia. 01.09.1978, $200 \mathrm{~m}: 1$ đ $15.8 \mathrm{~mm} ; 1$ ov. 913.7 mm (MNHN-Ga 3278).

MUSORSTOM 4 : stn 183, $280 \mathrm{ml}: 1$ đ $10.8 \mathrm{~mm} ; 1911.4 \mathrm{~mm}$ (MNHN-Ga 2670). $-\operatorname{Sm1} 184.260 \mathrm{~m}: 2 \delta 6.0$ and $7.7 \mathrm{~mm} ; 1$ ov. $98.3 \mathrm{~mm} ; 2$ 영 10.3 and 10.5 mm (MNHN-Ga 3273). - Stn 191, $250 \mathrm{~m}: 1 \mathrm{ov}$. 910.0 mm (MNHN-Ga 2671). - Stn 227, $320 \mathrm{~m}: 1 \neq 5.7 \mathrm{~mm}$ (MNHN-Ga 2672).
 $5.8 \mathrm{~mm} ; 2$ ov. 912.1 and 12.3 mm (USNM). -Stn 79, 243-260 m: $1 \delta 10.8 \mathrm{~mm}$ (MNHN-Ga 2676). - Stn 83. 200 m : 1 ov . 911.2 mm (MNHN-Ga 3401). - Stn 84, $170 \mathrm{~m}: 1 \delta 8.4 \mathrm{~mm}$ (MNHN•Ga 2677).

Smb $3: \sin 14,246 \mathrm{~m}: 295.8$ and 8.7 mm (MNHN-Ga 2678).
Smib $4: \sin 41,235 \mathrm{~m}: 1 \mathrm{ov}$. 914.5 mm (MNHN-Ga 2680). - $\operatorname{Stn} 51,260 \mathrm{~m}: 1 \mathrm{ov} .913 .6 \mathrm{~mm}$ (MNHN-Ga 2681). - $\operatorname{Stn} 57,260 \mathrm{~m}: 1 \delta 9.0 \mathrm{~mm}$ (MNHN-Ga 3274).

Loyalty Islands. Musorstom $6: \operatorname{stn} 399,282 \mathrm{~m}: 3$ of 8.7 to $11.0 \mathrm{~mm}($ MNHN-Ga 2821).— $\operatorname{Stn} 473,236 \mathrm{~m}: 1$ of 11.3 mm ; 1 ㅇ 12.5 mm (MNHN Ga 2679).

TYpes. - The male of 13.5 mm from Citalcal 2. Sin 19 (MNHN-Ga 2673) has been selected as holotype; the olher specimens are paralypes.

ETymology. - From the Latin, gutatus, spotted, in reference to the colour pattern of the species.

FIG. 19. - Munida gracilis Henderson. 1885, 96.8 mm , from New Zealand, Sin 166 ("Challenger") : a, carapace, dorsal view; \mathbf{b}, sternal plastron; \mathbf{c}, ventral view of cephatic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 20. - Munida guttata sp. nov., ठ 13.5 mm , holotype from Stn 19 (CHALCAL 2) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, plastron; \mathbf{c}, ventral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

DESCRIPTION. - Carapace with numerous secondary striac. Posterior striae not interrupted on intestinal region. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth 10 sixth thoracic sternites with short arcuate striae; lateral parts of seventh thoracic sternite with numerous coarse granules. Second abdominal tergite with a row of $8-10$ spines on anterior ridge. Second and third segments each with 2-4 transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum coneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornca, distomesial longer than distolateral. First segment of antennal peduncle with long distomesial spine excecding third segment; distomesial spine on second segment exceeding antennal peduncle. Extensor margin of merus of third maxilliped with well developed distal spinc. Movable and fixed fingers of cheliped with a row of spines along mesial and lateral borders, respectively. Dactylus of walking legs half as long as propodus, with movable spinules along entire ventral margin.

COLOUR. - Ground colour of carapace and abdominal segments whitish, with small red spots. Rostrum and supraocular spines orange. Chelipeds and walking legs whitish with red spots. Distal part of chelipeds white. Dactylus of walking legs whitish. with median red spot.

Remarks. - M. gutata resembles M. distiza sp. nov. from the Philippines, New Caledonia, Loyalty Islands. Matthew and Himter lslands. They differ in the following aspects:

- The extensor border of the merus of the third maxilliped has one well developed distal spine in M. guttata, absent in M. distiza.
- The colour patterns are quite different (sce Figs 68, 69 and 73).

SiZF. - The males examined ranged hetween 5.7 and 16.5 mm , females between 5.8 and 14.5 mm ; ovigerous females from 8.3 mm .

DISTRIBUTron. - New Caledonia and Loyalty lslands, between 170 and 320 m ,

Munida haswelli Henderson, 1885

Fig. 21
Munida /Haswelli Henderson, 1885: 411.
Munida haswelli - Henderson. 1888: 139. pl. 3, fig. 5. - Whitelegge, 1900: 193. - Hal.f, 1927: 80, fig. 76; 1941 : 273. - HalG, 1973 : 273, 275 (key).

MATER1AL EXAMINED. - Ausiratia. "Challenger" : sin 163a, 04.04.1874, 36 ${ }^{\circ} 59^{\prime} \mathrm{S}, 150^{\circ} 20^{\circ} \mathrm{E}, 278 \mathrm{~m}: 2$ of 4.0 and $10.9 \mathrm{~min}: 1 \% 4.9 \mathrm{~mm}$ types (BM).

REmARKS. - Mumida haswelli has been cited in several localities off southern and western Australia between 90 and 420 m . As in the case of M. gracilis Henderson, 1885, from New Zealand (sec above), due to the proximity of the area of occurrence of this species with the zone studied in this paper, a description and an illustration is provided.

DIAGNOSIS. - Carapace with secondary striae between main striae. Intestinal region with scales. Protogastric spines behind largest epigastric spincs, severa! parahepatic. one anterior branchial and one postcervical spines on each side. External orhital spine well developed, situated on anterolateral angle of carapace. Branchial margin with 5 spines. Thoracic stemites with short arcuate striae. Second abdominal tergite with 7-9 spines on anterior ridge. Second and third segments cach with 3-4 transverse striac. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal antennular segment reaching end of cornea, distomesial spine longer than distolateral. Distomesial spine on basal segment of antennal peduncle reaching end of second segment; distomesial spine on second segment exceeding peduncle. Merus of third maxilliped with extensor margin armed with distal spine. Cheliped with movable finger armed with one basal and one distal spine; fixed finger with one distal spine. Dactylus of walking legs half as long as propodus, terminal third of ventral margin unarmed.

Fig. 21. - Munida haswelli Henderson, 1885, a•d, f-g: $\delta 10.9 \mathrm{~mm}$, from Australia, Stn 163 a ("Challenger"); e: 94.9 mm from Australia, Sin 163a ("Challenger") a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, left third maxilliped, lateral view; \mathbf{e}, left cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 22. - Munida hyalina sp. nov., o 5.0 mm , holotype from Stı 359 (MuSORSTOM 5) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, left first walking leg, lateral view; g. dactylus of right first
walking leg, latcral view.

DISTRIBUTION. - Southern and Western Australia, between 90 and 420 m .

Munida hyalina sp. nov.

Fig. 22
Matertal examined. - New Caledonia. Biogeocal: stn $253,310-315 \mathrm{~m}: 1 \mathrm{ov} .93 .1 \mathrm{~mm}$, paratype (MNHNGa 2682).

Chesterfield Islands. Musorstom $5: \operatorname{stn} 359,700-720 \mathrm{~m}: 1$ § 5.0 mm , holotype (MNHN-Ga 2683).
Etymology. - From the Greek, hyalos, glass, in reference to the transparent aspect of the species.
DESCRIPTION. - Carapace with transverse ridges weakly distinct. mostly not interrupted. Secondary striae absent. Intestinal region without scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 3 spines. Thoracic stemites without striae; lateral parts of scventh sternite with small granules. Abdominal segments without spines and striac. Male with 1 wo pairs of gonopods on first and second abdominal segments. Eye large, maximum corncal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spincs excluded) distinctly exceeding cornea, distolateral spine longer than distomesial. First segment of antennal peduncle with distomesial spinc reaching end of second segment; distomesial spine on second segment not excecding antennal peduncle. Extensor border of merus of third maxilliped unarmed. Movable finger of cheliped with basal and distal spines; fixed finger with several distal spines. Dactylus of walking legs $3 / 4$ propodus length, with movable spinules along entire ventral margin.

Remarks. - M. hyalina is related to M. minuta Macpherson, 1993, from the Philippines (Macpherson, 1993). Both species differ in several aspects :

- The frontal margins are morc oblique in M. hyalina ihan in M. minuta.
- The lateral parts of the scventh thoracic sternite have small granules in M. hyalina; these granutes are absenI in M. minuta.
- The distal spines on basal antenuular segment are subcqual in M. minuta, whercas the distomesial spinc is shorter than the distolateral one in M. hyalina.
- The extensor margin of the merus of the third maxilliped has one spinc in M. minuta, unarmed in M. hyalina.

Dis'iribution. - New Caledonia and Chesterfield lslands. between 310 and 720 m .

Munida idyia sp. nov.

Fig. 23
Material examined. - New Caledonia. Musorstom $4: \operatorname{stn} 170,485 \mathrm{~m}: 2 \delta 8.4 \mathrm{~mm}$, holotype (MNHN-Ga 2648) and 8.5 mm , paratype (MNHN-Ga 2685).

ETYMOLOGY. - The name refers to one of the Occanids of the Greek mythology (Idyia).
DESCRIPTION. - Carapace with numerous secondary striac. Main striac interrupted on intestinal region. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Thoracic sternites with some arcuate striac: lateral parts of sixth and seventh thoracic sternites with coarse granules. Second abdominal tergite with a row of 9 spines on anterior ridge. Sccond and third segments each with 2-3 transverse striae. Males with two pairs of gonopods on firsi and second abdominal segments. Eye large. maximum comeal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antemule (distal spines excluded) slightly excceding cornca, distomesial slightly longer than distolateral. Basal segment of antennal peduncle with long distomesial spine reaching end of antennal peduncle; dislomesial spine on second segment dislinctly exceeding antennal peduncle. Extensor border of merus of third maxilliped with smatl distal spine. Movable finger of cheliped with one basal and one distal spine on mesial
border; fixed finger with several spines along lateral border. Daclylus of walking legs half as long as propodus, wilh movable spinules along ventral margin, terminal third unarmed.

REMARKS. - M. idyia is closely related to M. tyche sp. nov. from New Caledonia and Cheslerfield Islands, bul they differ in several features (see Remarcks under thal species).

DISTRIBUTION, - New Caledonia, 485 m .

Munida incerta Henderson, 1888

Fig. 74
Munida incerta - Baba, 1988: 106 (references); 1990:963.
MATERIAL EXAMINED. -Japan. Tosa Bay, 150-300 m, 11.1963: 2 o 19.9 and 22.6 mm (MNHN-Ga 1096).
Philjppines. MUSORSTOM $1: \operatorname{stn} 40,265-287 \mathrm{~m}: 1$ of $23.8 \mathrm{~mm} ; 1$ ov. $922.5 \mathrm{~mm} ; 2$ \& 13.7 and 16.4 mm (MNHN•Ga 2686) . - Stn 50, $415-510 \mathrm{~m}: 16$ of 8.2 to $25.2 \mathrm{~mm} ; 3$ ov. 915.7 to $20.6 \mathrm{~mm} ; 19$ \& 4.6 to 19.7 mm (MNHN•Ga 2687), -Stı 51, $170.200 \mathrm{~m}: 1 \delta^{\circ} 26.0 \mathrm{~mm} ; 1 \mathrm{ov} .926 .3 \mathrm{~mm}$ (MNHN-Ga 2688).

MUSORSTOM $2: \operatorname{stn} 40,280-440 \mathrm{~m}: 3 \% 24.0$ to $25.4 \mathrm{~mm} ; 4$ ov. $\$ 22.0$ to $23.4 \mathrm{~mm} ; 1921.8 \mathrm{~mm}$ (MNHN.Ga 2689). - $\operatorname{Sin} 75,300-330 \mathrm{~m}: 11 \delta^{\circ} 8.0$ to $19.7 \mathrm{~mm} ; 22$ ㅇ 6.8 to 16.5 mm (MNHN Ga 2690). - Sin $83,318-320 \mathrm{~m}$: 1.5 of 10.7 to $28.0 \mathrm{~mm} ; 5 \mathrm{ov}$. 여 20.3 to $27.0 \mathrm{~mm} ; 7$ ㅇ 9.0 to 18.2 mm (MNHN.Ga 2691),

MUSORSTOM $3: \operatorname{stn} 119,320-337 \mathrm{~m}: 14 \delta^{*} 10.1$ to $27.4 \mathrm{~mm} ; 5 \mathrm{ov}$. ㅇ 21.0 to $22.2 \mathrm{~mm} ; 16$ of 11.1 to 22.4 mm (MNHN Ga 2692). - $\operatorname{Sin} 123,700-702 \mathrm{~m}: 2 \delta 6.1$ and $18.0 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2693)$. $-\operatorname{Sin} 133,334-390 \mathrm{~m}: 1 \delta$ 22.5 mm ; 1 ㅇ 21.4 mm (MNHN Ga 2694).
"Challenger" : $\operatorname{stn} 200,23.10 .1874,06^{\circ} 47 \mathrm{~N}, 122^{\circ} 28^{\prime} \mathrm{E}, 463 \mathrm{~m}: 1$ ㅇ 15.5 mm , type (BM).
Kiribati. $600 \mathrm{~m}, 05.1987: 1$ o 29.6 mm (MNHN-Ga 2738).
New Caledonia. BIOCAL : $\operatorname{stn} 40.650 \mathrm{~m}: 2 \delta 28.5$ and 31.3 mm (MNHN-Ga 2695). $\operatorname{Sin} 52,540-600 \mathrm{~m}: 5$ ס 21.1 to $29.7 \mathrm{~mm} ; 5 \mathrm{ov}$. $ᄋ 21.5$ to 24.7 mm (MNHN-Ga 2696). - $\operatorname{Stn} 109,495-515 \mathrm{~m}: 1 \mathrm{ov}$. 927.5 mm (MNHN-Ga 2697).

MUSORSTOM $4: \operatorname{stn} 156,530 \mathrm{~m}: 1 \delta^{\circ} 26.0 \mathrm{~mm}$ (MNHN-Ga 2698). - Stn $158,620 \mathrm{~m}: 1 \delta^{\circ} 22.3 \mathrm{~mm} ; 4$ ¢ 5.8 to 12.5 mm (MNHN-Ga 2699). - Stn $159,600 \mathrm{~m}: 1$ б 17.4 mm (MNHN-Ga 2700). - Stn 169, $600 \mathrm{~m}: 26$ of 7.9 to $28.2 \mathrm{~mm} ; 9$ ov. 918.4 to $24.7 \mathrm{~mm} ; 14912.2$ to 24.7 mm (MNHN.Ga 2701). - $\operatorname{Sin} 170,485 \mathrm{~m}: 2 \mathrm{O}^{7} 16.0$ and 21.5 mm (MNHN-Ga 2702). - $\operatorname{Stn} 178,520 \mathrm{~m}: 3 \delta^{\circ} 8.5$ to $12.4 \mathrm{~mm} ; 1$ ov. 오 $24.7 \mathrm{~mm} ; 2$ 오 10.0 and 13.4 mm (MNHN.Ga 2703). - Stn 179, $480 \mathrm{~m}: 1$ o $18.9 \mathrm{~mm} ; 1$ क 21.0 mm (MNHN-Ga 2704). - Stn 194, $550 \mathrm{~m}: 3$ of 13.0 to $31.9 \mathrm{~mm} ; 10 \mathrm{ov}$. $\$ 15.0$ to $27.3 \mathrm{~mm} ; 3$ \$ 17.2 to 18.0 mm (MNHN-Ga 2705). - Stn 197, $550 \mathrm{~m}: 2$ of 11.2 and 20.5 mm (MNHN.Ga 2706). - Stn 198, $585 \mathrm{~m}: 30$ of 14.7 to $32.0 \mathrm{~mm} ; 22 \mathrm{ov}$. 913.9 to $24.4 \mathrm{~mm} ; 20$ \& 15.4 to 24.2 mm (MNHN. Ga 2707). - $\operatorname{Stn} 199,600 \mathrm{~m}: 19 \delta 10.4$ to $28.7 \mathrm{~mm} ; 6 \mathrm{ov}$. $\% 17.5$ to $20.4 \mathrm{~mm} ; 11$ if 10.4 to 18.7 mm (MNHN Ga 2708), - Stn 200, $535 \mathrm{~m}: 6 \delta^{\circ} 12.2$ to $32.2 \mathrm{~mm} ; 3$ ov. 920.6 to 26.7 mm ; 1 ¢ 28.6 mm (MNHN•Ga 2709). - Stn 201, $490 \mathrm{~m}: 1$ © 26.5 mm ; 1 ov. 928.5 mm (MNHN-Ga 2710). - Stn 202. $580 \mathrm{~m}: 44$ б 12.1 to $31.8 \mathrm{~mm} ; 5 \mathrm{ov}$. $? 20.2$ to $22.2 \mathrm{~mm} ; 10$ ᄋ 9.3 to 20.2 mm (MNHN-Ga 2711). $-\operatorname{Stn} 221,535.560 \mathrm{~m}: 2$ of 26.5 and $30.5 \mathrm{~mm} ; 298.0$ and $20.0 \mathrm{~mm} ; 1$ juv. 5.8 mm (MNHN. Ga 2712). - Stn 223, $545-560 \mathrm{~m}: 188.0 \mathrm{~mm}$ (MNHN. Ga 2713). - $\operatorname{Stn} 236.495-550 \mathrm{~m}: 12 \delta 7.6$ to $34.5 \mathrm{~mm} ; 1$ ov. $928.6 \mathrm{~mm} ; 597.8$ to 10.4 mm (MNHN-Ga 2714). $\operatorname{Stn} 238,500-510 \mathrm{~m}: 1 \delta^{\circ} 8.0 \mathrm{~mm} ; 1$ ㅇ 8.3 mm (MNHN Ga 2715). - Stn $239,470-475 \mathrm{~m}: 1488.0$ to $35.5 \mathrm{~mm} ; 2 \mathrm{ov}$, ¢ 27.8 and $29.0 \mathrm{~mm} ; 896.2$ to 17.5 mm (MNHN-Ga 2716). - $\operatorname{Sin} 240,475-500 \mathrm{~m}: 396.2$ to 12.5 mm (MNHN-Ga 2717). - Stn 241, 470-480 m : 2 88.0 and $15.7 \mathrm{~mm} ; 3$ ov. 917.0 to $21.6 \mathrm{~mm} ; 398.4$ to 10.5 mm (USNM). $\operatorname{Stn} 242,500.550 \mathrm{~m}: 16 \delta 8.0$ to $26.0 \mathrm{~mm} ; 1.5$ ¢ 6.3 to 22.7 mm (MNHN Ga 2719). - $\operatorname{Stn} 247,435-460 \mathrm{~m}: 1 \mathrm{ov}$, \wp 20.4 mm (MNHN-Ga 2720).

SM1B 2: stn 11, 475-500 m: $1 \delta^{*} 24.5 \mathrm{~mm}$ (MNHN-Ga 2721).
Smi 3 : stı 21, $525 \mathrm{~m}: 1$ \& 12.9 mm (MNHN Ga 2722).
Loyalty Istands. MUSORSTOM 6: stı 466. $540 \mathrm{~m}: 1 \delta 12.0 \mathrm{~mm} ; 1$ ㅇ 17.5 mm (MNHN-Ga 2727). - Stn 469 , $630 \mathrm{~m}: 1$ o 12.2 mm (MNHN-Ga 2728). - $\operatorname{Sin} 470,560 \mathrm{~m}: 2818.6$ and $20.0 \mathrm{~mm} ; 1$ ㅇ 21.5 mm (MNHN-Ga 2729). - Stn 489, $700 \mathrm{~m}: 1$ ㅇ 14.5 mm (MNHN Ga 3497).

Chesterfield Islands. MUSORSTOM $5: \operatorname{stn} 341,620-630 \mathrm{~m}: 1 \mathrm{ov}$. $¢ 23.5 \mathrm{~mm} ; 1$ 우 20.4 mm (MNHN.Ga 2730). - Stn 358, 680-700 m: 1 む 15.5 mm (MNHN-Ga 2731). - $\operatorname{Stn} 359,700.720 \mathrm{~m}: 1$ d 29.0 mm (MNHN-Ga 2732). $\operatorname{Stn} 363,685.700 \mathrm{~m}: 6$ o 25.5 to $33.6 \mathrm{~mm} ; 3$ of 22.4 to 25.7 mm (MNHN-Ga 2733). -Stt $364,675 \mathrm{~m}: 5$ of 20.4 to $33.3 \mathrm{~mm} ; 2 \% 17.5$ and $24.6 \mathrm{~mm}(\mathrm{MNHN} \cdot \mathrm{Ga} 27.34)$. - Stn $365,710 \mathrm{~m}: 9 \delta 23.0$ to $34.3 \mathrm{~mm} ; 1824.0 \mathrm{~mm}$ (MNHN-Ga 2870). - $\operatorname{Stn} 383,600-615 \mathrm{~m}: 3 \delta 16.4$ to $24.9 \mathrm{~mm} ; 5 \mathrm{ov}$. 923.6 to $28.0 \mathrm{~mm} ; 5$ 9 13.5 to 18.0 mm (MNHN-Ga 2735). - Stn 387, 650-660 m: 3 o 30.0 to $34.3 \mathrm{~mm} ; 1$ ㅇ $24.4 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2736)$. - Stn $389,500 \mathrm{~m}: 1$ on 20.4 minn (MNH-Ga 2737).

Fig. 23.-Munida idyia sp. nov., $\delta 8.4 \mathrm{~mm}$, holotype from $\operatorname{Stn} 170$ (Musorstom 4) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Corall 2: stm 13, 700-705 m: 1 o 29.8 mm (MNHN-Ga 2723). - $\operatorname{Sin} 15,580-590 \mathrm{~m}: 2$ ot 14.7 and 16.0 mm ; 10 ov . $\frac{9}{} 19.4$ to $25.0 \mathrm{~mm} ; 588.0$ to 26.1 mm (MNHN-Ga 2724). - Str 16, $500 \mathrm{~m}: 1 \delta 32.0 \mathrm{~mm} ; 2 \mathrm{ov}$. \& 25.0 and 25.5 mm (MNHN-Ga 2725). - Stn 17, $500 \mathrm{~m}: 1$ ov. 928.7 mm (MNHN-Ga 2726).

Remarks. - The New Caledonian specimens agree quite well wilh the type material and additional information provided by other authors (BABA, 1988, 1990). Several differences are observed belwecn the specimens from the different localities, although they are nol constant (c.g. the chelipeds are more cylindrical in Philippine specimens, whereas those from New Calcdonia are more polygonal). Some specimens from New Caledonia have the chelipeds more granulated and the supraocular spines more divergent than in the Philippine material. Furthermore, BABA (personnal communication) has ohserved distincl differences in the colour pattern between the Kci lslands (Indonesia) and the Western Australian specimens as well as in the morphology of the telson in males. These differences suggest the existence of several species or forms, and a future revision of his species is recommended.

The colour pattern of the specimens collected in New Caledonia is as follows: Ground colour of carapace and abdomen orange, spines dark orange; epigastric region pinkish. Chelipeds and walking legs with transverse whitish and red bands; distal part of fingers of chelipeds and dactylus of walking legs whitish. This patlern agrees quite well with the figure provided by BABA (1986c).

SLZE. - The males examined ranged between 8.0 and 35.5 mm , females between 5.8 and 29.0 mm ; ovigerous lemales from 13.9 mm .

Distribution. - Previously known from southern Mozambique, Madagascar, Malay Archipelago, the Philippines and Japan, between 17 to 658 m (BABA, 1990). The specimens from New Caledonia and adjacent waters were caught between 435 and 720 m . The present malerial from the Philippines was collected between 170 and 702 m .

Munida javieri sp. nov.

Figs 24. 75
MATER1AL EXAMINED. - New Caledonia. Musorstom $4: \operatorname{stn} 183,280 \mathrm{~m}: 184.7 \mathrm{~mm}$ (USNM).
SMIB 4: stn 42, $320 \mathrm{~m}: 1 \delta 12.2 \mathrm{~mm} ; 1$ ㅇ $8.6 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2740,2741)$. - $\operatorname{Stn} 44,270-300 \mathrm{~m}: 1$ ¢ 6.0 mm (MNHN-Ga 2742).

Matthew and Hunter Islands. Volsmar : stn $50.425 \mathrm{~m}: 195.4 \mathrm{~mm}$ (MNHN-Ga 2743).
Cheslerfield Islands. MUSORSTOM $5: \operatorname{stn} 305,430-440 \mathrm{~m}: 197.6 \mathrm{~mm} ; \mathrm{t}$ juv. 4.3 mm (MNHN-Ga 2744).
TYpes. - One male (12.2 mm) from Smib 4. Stn 42 (MNHN-Ga 2740) has been selected as holotype; the other specimens are paratypes.

ETYMOLOGY. - This species is dedicated to my son Javier.
DESCRIPTION. - Dorsal surface of carapace moderately strigose, wilh only 1 or 2 complete transverse striae on posterior portion; remainig striae interrupted. Rostrum and supraocular spines dorsally carinated. External orbital spine small. situated on frontal border, mesial to lateral margin. Branchial margin with 3 spines. Fourth thoracic sternite with several short arcuate striac; fifth to seventh sternites without striac. Abdominal segments unarmed. Second and third segments each with one transverse stria. Males with two pairs of gonopods on first and second ahdominal segments. Eye large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace belween bases of external orbital spines. Basal segment of antennule (distal spines excluded) not exceeding cornea, with 2 short subequal distal spines. First segmenl of antennal peduncle with short distomesial spine not reaching midlength of second segment and one small distolateral spine; distomesial spine on second segment exceeding antennal peduncle; small distal spines on mesial and lateral angle of third segment. Extensor margin of merus of third maxilliped unarmed. Fixed finger of cheliped with a lateral row of spines; movable finger with a row of spines along mesial border; dorsal side ol both fingers with a row of spines, absent in juvenile specimen. Dactylus of walking legs $1 / 2$ propodus lengit, with movable spinules along entire ventral margin.

Flg. 24. - Munida javieri sp. nov, б 12.2 mm , holotype from $\operatorname{Stn} 42$ (SM1B 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped. lateral vicw; e, left cheliped, dorsal view; f, right first walking leg, latcral view; g, dactylus of right first walking leg, lateral view.

Fig. 25. - Munida laurentae sp. nov., o 15.3 mm , holotype from Stn 1 (Cilalcal 2) : a, carapace, dorsal view; b. sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped. lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

COLOUR. - Ground colour of carapace and abdominal segments yellow; purple spots on cpigastric and mesogastric regions; purple band along cervical groove, lateral margins of branchial regions and posterior border of carapace. Rosirum and supraocular spines orange. Spines on carapace surface reddish. Chelipeds orange, with whilish spols; distal half of fingers whitish; one red spol on hand near base of movable finger. Walking legs whilish.

REmarks. - M. javieri resembles M. hystrix Macpherson \& de Sainl Laurent, 1991, from French Polynesia (MACPHERSON \& DE SAint Laurent, 1991). The two species are casily differentiable by the spinulation of the carapace: M. hystrix has the anterior half of the dorsal carapace surface with numerous regular spines extending 10 second postcervical stria; M. javieri has the dorsal carapace surface armed with epigasiric and parahepatic spines, but no olher spinulation in front of the cervical groove. The colour patterns are also different: M. hystrix has the ground colour of the carapace whitish, with reddish spots and 1 ransverse red bands, chelipeds whilish wilh red bands; M. javieri has the ground colour of the carapace yellow, with purple spols and bands, the chelipeds are orange wilh whilish spots and wilh one red spot on the hand.

SIZE. - The male measured 12.2 mm ; females ranged between 4.7 and 8.6 mm .
Distribution. - New Caledonia. Chesterfield 1slands, Mathew and Hunter Islands, between 280 and 440 m .

Munida laurentae sp. nov.

Figs 2.5, 92

Material examined. - New Caledonia. Biocal: stn $45,430-465 \mathrm{~m}: 2 \delta 14.7$ and $17.1 \mathrm{~mm} ; 4$ ov. 913.0 to 19.1 mm (MNHN-Ga 2746). - Stn 46, $570.610 \mathrm{~m}: 295.7$ and 7.0 mm (MNHN-Ga 2747). - Sin 47, $550 \mathrm{~m}: 1$ o 28.6 mm (MNHN Ga 2748). - $\operatorname{Stn} 52,540.600 \mathrm{~m}: 2 \delta 8.2$ and $10.9 \mathrm{~mm} ; 496.2$ to 12.5 mm (MNHN.Ga 2749), $\operatorname{Sin} 66,505-515 \mathrm{~m}: 2$ o 11.2 and 13.3 mm (MNHN-Ga 2750). - Sin 67, 500-510 m:2 813.5 and $16.7 \mathrm{~mm} ; 1 \mathrm{ov}$, of $12.2 \mathrm{~mm} ; 1913.4 \mathrm{~mm}$ (MNHN Ga 2751). - $\operatorname{Stn} 81,430 \mathrm{~m}: 2$ of 7.2 and 10.2 mm (MNHN Ga 2752).

MUSORSTOM 4 : stn $155,500-570 \mathrm{~m}: 2$ ov. $\% 12.8$ and 14.7 mm (MNHN-Ga 2753). - Stn 194, $550 \mathrm{~m}: 109.0 \mathrm{~mm}$ (MNHN.Ga 2754). - Stn $195,470 \mathrm{~m}: 5$ क 9.0 to $16.2 \mathrm{~mm} ; 2$ ov. 812.3 and $15.8 \mathrm{~mm} ; 499.6$ to 12.0 mm (MNHN. Ga 2755). - Sm 215, $485-520 \mathrm{~m}: 5$ § 16.4 to $20.0 \mathrm{~mm} ; 1$ ov. 914.4 mmn (MNHN-Ga 2757).

SMIB $1: \operatorname{stn} 7,500 \mathrm{~m}: 1$ § $19.8 \mathrm{~mm} ; 1$ ㅇ 16.6 mm (MNHN-Ga 2745).
CHALCAL 2: sin $1.500 .580 \mathrm{~m}: 1$ o $15.3 \mathrm{~mm} ; 1 \mathrm{ov}, \circ 15.4 \mathrm{~mm} ; 1 \% 20.0 \mathrm{~mm}$ (MNHN-Ga 2761, 2762). - Sin 2 $500-610 \mathrm{~m}: 16$ ot 10.0 to $17.4 \mathrm{~mm} ; 6$ ov. $\% 14.0$ to $19.0 \mathrm{imm} ; 7$ ㅇ 9.2 to 18.8 mm (USNM).-Stn 21, $580 \mathrm{mz}: 6$ ठ 9.4 to $14.6 \mathrm{~mm} ; 2 \mathrm{ov} .912 .4$ and $15.3 \mathrm{~mm} ; 298.8$ and 11.8 mm (MNHN.Ga 2764). - $\operatorname{Sin} 72,527 \mathrm{~m}: 389.4$ to 11.8 mm (MNHN-Ga 2765). - Stin 73, $573 \mathrm{~m}: 1 \% 8.6 \mathrm{~mm}$ (MNHN-Ga 2766). - Sin 75, $600 \mathrm{~m}: 498.1$ to 9.5 mm (MNHN Ga 2767). - Stn 82, $304 \mathrm{~m}: 1 \delta 19.4 \mathrm{~mm} ; 2$ ov. 916.0 and 17.0 mun (MNHN Ga 2768).

S mib 3: $\operatorname{stn} 1,520 \mathrm{~m}: 2$ б 10.7 and $12.8 \mathrm{~mm} ; 1 \circ 11.6 \mathrm{~mm}$ (MNHN-Ga 2769). $-\operatorname{Stn} 2,530-537 \mathrm{~m}: 1 \mathrm{ov} . \circ$ 13.3 mm (MNHN-Ga 2770). - Stn $3,530 \mathrm{~m}: 199.8 \mathrm{~mm}$ (MNHN-Ga 2771). 一 Stn $7,505 \mathrm{~m}: 1$ of 12.2 mm (MNHN.
 (MNHN-Ga 2775).
 9.3 mm (MNHN-Ga 2781) - Stn $37,540 \mathrm{~m}: 2 \delta 8.3$ and $9.1 \mathrm{~mm} ; 497.2$ to 13.8 mm (MNHN.Ga 2782). - Sin 39, $560 \mathrm{~m}: 3$ क 12.4 to $16.4 \mathrm{~mm} ; 1$; 15.3 mm (MNHN-Ga 2784). - Stn $55,260 \mathrm{~m}: 3$ of 6.9 to 17.5 mm (MNHN-Ga 2785). - Stn $58,560 \mathrm{~m}: 2$ © 8.2 and 11.8 mm (MNHN.Ga 2786). - $\operatorname{Stn} 69,405 \mathrm{~m}: 1 \mathrm{ov} .917 .5 \mathrm{~mm}$ (MNHN-Ga 2787).

AZTEQUE: $\sin 3,290-400 \mathrm{~m}: 1$ ¢ 29.6 mm (MNHN.Ga 2788). - $\operatorname{Stn} 6,425.470 \mathrm{~m}: 6 \delta 15.7$ to $17.5 \mathrm{~min} ; 3$ © 13.8 to 31.5 mm (MNHN Ga 2789).

Loyalty Istands. MUSORSTOM 6: stn 393, $420 \mathrm{~m}: 1$ ס 12.7 mm (MNHN-Ga 2776). - Sun 466, $540 \mathrm{~m}: 1$ of
 $17.3 \mathrm{~mm} ; 1$ \& 16.3 mm (MNHN-Ga 2779).

Matthew and Hunter Islands. Volsmar: $\operatorname{stn} 38,420 \mathrm{mI}: 1 \mathrm{ov}$. 815.5 mm (MNHN. Ga 2790).
Chesterfield Islands. Musorstom $5: \sin 306,375.415 \mathrm{~m}: 2$ of 5.8 and $10.0 \mathrm{~mm} ; 1 \mathrm{ov}$ o $\% 13.7 \mathrm{~mm}$ (MNHN. Ga 2791). - $\operatorname{Stn} 338,540.580 \mathrm{~m}: 1$ ס 12.9 mm (MNHN Ga 2792). $-\operatorname{Stn} 388,500-510 \mathrm{ml}: 1 \% 16.3 \mathrm{~mm}$ (MNHN Ga 2793).

TYPES. - One male of 15.3 mm from Cialcal 2, Sin 1 (MNHN-Ga 2761) has been selected as hololype; the other specimens are paratypes.

Fig. 26. - Munida leagora sp. nov.. of 12.0 mm , holotype from Stn 78 (BIOCAL) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; g, dactylus of right first walking
leg, lateral view.

Etymology. - It is a pleasure lo dedicate this species to Michèle de Saint laurent from the Muséum national d'Histoire naturelle, Paris for her continuous supporl in my work.

DESCRIPTION . - Carapace with numerous secondary siriae. Gastric region with 2 epigastric spines placed behind supraoculars. One postcervical spine on each side, occasionally 1-2 small spines behind each postcervical spine. Cardiac region without spines. Posterior transverse ridge armed with 2 median spines. External orbitat spine well developed, siluated at anterolateral angle of carapace. Branchial margin with 4 spines. Thoracic slernites with numerous striac. Abdominal segmenls with numerous striac. Second, third and fourth segments each with 4 spines on anterior transverse ridge; posterior ridge of fourth segment unarmed. Males with gonopods absent from first abdominal segment. Eyc moderately large, maximum conneal diameter $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal antennular segment (distal spines excluded) reaching end of corneat, distomesial spine longer than distolateral. First antennal segment moderately produced on mesial margin, slightly exceeding second segment; distomesial spine on second segment exceeding antennal peduncle; third segment with long distomesial spine, exceeding antennal peduncte. Merus of third maxilliped bearing one median marginal spine on flexor border and one distomarginal spine on extensor margin. Fingers of cheliped subcylindricat, distally curving and crossing, ending in sharp point; one spine located near tip of fixed finger. Dactylus of walking legs $1 / 3$ propodus length, with dorsal border slightly concave, ventral border convex, with median corneae spinules, unarmed on proximal and distal parts.

COLOUR. - Ground colour of carapace and abdomen orange; red spot on intestinal region, absent in larger specimens; median part of abdominal segments whitish. Rostrum orange. Chelipeds and walking legs wilh transverse whitish and red bands; proximal third of fingers of chetipeds reddish, distal part whitish. Dactylus of walking legs whitish.

Remarks. - M. laurentae is related lo M. pilosimanus Baba, 1969, from Japan (BABA, 1969a). The comparison of the new species with several specimens from Kyushu-Palau Ridge reported by BABA (1986c) (1 ठ $11.9 \mathrm{~mm} ; 2 \mathrm{ov}$. ㅇ 14.7 and 16.4 mm) shows sevcral constanl differences:

- One well developed parithepatic spine on each side in M. pilosimanus, absent in the new species.
- The striae on the thoracic sterniles are more numerous in M. laureutae than in M. pilosimanus.
- The mesial spine on the basal antenual segment not exceed the second segment in M. pilosimalus, whereas in the new species this spine exceeds the second segment. The mesial spine on the second antennal segment exceeds the antennal peduncle in M. laureutae, nol in M. pilosimames.
- One distal spine on the extensor border of the merus of the third maxilliped in M. lauremae. This spine is absenl in M. pilosimanus.
M. laurentae is also close lo M. ocyrhoe sp. nov. from New Caiedonia and Chesterfield Islands (see below for the differences between these species).

SIZE. - The males examined ranged between 5.8 and 28.6 mm ; females between 5.7 and 31.5 mm ; ovigerous females from 12.2 mm .

Distribution. - New Caledonia, Loyaliy lslands, Chesterfield lslands, Mathew and Hunter lslands, belween 260 and 610 m .

Munida leagora sp. nov.

Figs 26, 76
MATER1AL EXAMINED. - New Catedonia. Biocal: $\operatorname{stn} 67,500 \mathrm{~m}: 16 \% 9.3$ to $13.0 \mathrm{~mm} ; 2 \mathrm{ov}$. ㅇ 7.7 and 9.8 mm (MNHN-Ga 2794 and USNM). - Stn $77,440 \mathrm{~m}: 2 \delta 7.1$ and 10.3 mm (MNHN-Ga 3279). -Stn 78, 445450 m : 8 ס 7.7 to $14.4 \mathrm{~mm} ; 2$ ov. $\$ 8.0$ and $12.7 \mathrm{~mm} ; 3$ \$ 6.3 to 11.7 mm (MNHN•Ga 2795, 2796). - Stn 82 . $440 \mathrm{~m}: 3$ ठ 7.0 to $12.4 \mathrm{~mm} ; 194.9 \mathrm{~mm}$ (MNHN.Ga 3280).

MUSORSTOM $4: \operatorname{stn} 180,450 \mathrm{~m}: 1 \delta 4.0 \mathrm{~mm} ; 1 \circ 5.0 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2797) .-\mathrm{Stn} 238,500.510 \mathrm{~m}: 1$ 甲 14.6 mm (MNHN-Ga 3282). - Sin 239, 470-475 m: $2 \delta 8.2$ and $8.9 \mathrm{~mm} ; 199.0 \mathrm{~mm}$ (MNHN-Ga 3283).

Chalcal $2: \sin 21,500 \mathrm{~m}: 10 \delta 8.0$ to $13.2 \mathrm{~mm}(M N H N-G a 3281)$.

FIg. 27. - Munida leptitis sp. nov., 93.4 mm , holotype from $\operatorname{Stn} 431$ (MUSORSTOM 6) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral vicw; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

SMIB $3: \sin 1,520 \mathrm{~m}: 8$ of 6.8 to $11.6 \mathrm{~mm} ; 3$ ov. 96.7 to 9.3 mm (MNHN Ga 2798).
Smib $4: \sin 34,515 \mathrm{~m}: 1 \mathrm{ov}$. $911.4 \mathrm{~mm} ; 3$ ㅇ 8.3 to 9.2 mm (MNHN-Ga 3285). - Stn 38, $510 \mathrm{~m}: 2 \delta 11.4$ and 11.6 mm (MNHN-Ga 2803).

Loyalty Islands. MUSORSTOM 6: sm 391, $390 \mathrm{~m}: 1$ § $6.3 \mathrm{~mm} ; 1$ 여 6.1 mm (MNHN-Ga 2799). - Stn 408, $380 \mathrm{~m}: 1$ ठ 10.0 mm (MNHN-Ga 3284). - Sln 419. $283 \mathrm{~m} ; 4 \delta 7.3109 .4 \mathrm{~mm} ; 2$ ov. 96.9 and $9.0 \mathrm{~mm} ; 396.7$ and 7.6 mm (MNHN-Ga 3505). - $\operatorname{Stn} 428,420 \mathrm{~m}: 2$ of 7.8 and $11.9 \mathrm{~mm}(M N H N-G a 2800)$. $-\operatorname{Sin} 460: 420 \mathrm{~m}: 1$ of 8.9 mm (MNHN-Ga 2801). - Sin 478, $400 \mathrm{~m}: 1$ \& 6.8 mm (MNHN-Ga 2802). - Stn 485, $350 \mathrm{~m}: 1$ d 10.8 mm (MNHN-Ga 3506).

Chesterfield Islands. Musorstom $5: \operatorname{stn} 258,300 \mathrm{~m}: 2 \mathrm{ov} .95 .2$ and 5.6 mm (MNHN-Ga 3509). - Stn 267, $285 \mathrm{~m}: 192.7 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 3510)$. - Stn 274. $285 \mathrm{~m}: 1 \$ 4.1 \mathrm{~mm}$ (MNHN-Ga 3509). - Sin 278, $265 \mathrm{~m}: 1 \mathrm{ov}$. 9 6.9 mm (MNHN-Ga 2804). - Sln $300,450 \mathrm{~m}: 6$ § $6.9 \mathrm{~mm} ; 8$ ov. 96.2 1o 9.2 mm (MNHN-Ga 3286). - Sln 301,487 $610 \mathrm{~m}: 18$ ठ 5.4 1o $11.0 \mathrm{~mm} ; 7 \mathrm{ov} .95 .7$ to $7.3 \mathrm{~mm} ; 6$ ㅇ 4.7 10 6.8 mm (MNHN-Ga 2805). - S1n $305,430-440 \mathrm{~m}$: 20 of 4.3 to $10.2 \mathrm{~mm} ; 6 \mathrm{ov}$. ㅇ 5.6 to $9.0 \mathrm{~mm} ; 10$ \& 3.6 1o 7.0 mm (MNHN-Ga 2806). $-\operatorname{Stn} 306,375-415 \mathrm{~m}: 10$ d 5.1 1o 11.3 ; 1 ov . $97.6 \mathrm{~mm} ; 3$ ㅇ 5.3 to 5.9 mm (MNHN-Ga 2807). - $\operatorname{Sin} 332,400 \mathrm{~m}: 3$ of $9.21010 .8 \mathrm{~mm} ; 1 \mathrm{ov}$. I 10.0 mm (MNHN-Ga 2808). - Stn 338, 540-580 m : 2 § 6.3 and 11.0 mm (MNHN-Ga 2809).

TYPES - The male of 12.0 mm from Blocat, $\operatorname{Sin} 78$ (MNHN-Ga 2795) has been selected as holotype; the other specimens are paratypes.

Etymology, - The name refers to one of the Nereids of the Greek mythology (Leagora).
DESCRIPTION . - Carapace with secondary striae between main striac. Posteriormost major stria not medially interrupted, except in small specimens. Intestinal region with one scale. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few striae: fifth to seventh without striae. Abdominal segments unarmed. Second and third segments each with $3-5$ transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye large. maximum corneal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) ending at same level of cornea, with 2 subequal distal spines. First segment of antennal peduncle with long distomesial spine reaching end of second segment; distomesial spine on second segment distinctly exceeding antennal peduncle. Extensor border of merus of third maxilliped ularmed. Fixed finger of cheliped with a row of spines along lateral margin; movable finger with three spines along proximal half of mesial margin, and one distal spine. Dactylus of walking leg.s $1 / 2$ propodus length, with movable spinutes along ventral margin, distal fourth unamed.

Colour. - Carapace with wide transverse yellow and purple bands. Epigastric. mesogastric and cardiac regions with purple spot. Purple band along cervical groove. Second abdominal segment with median and tateral purple and yellow spots. Chelipeds and walking legs light orange; spines and some granules reddish. Distal part of fingers of chelipeds and dactylus of walking legs whitish.

Remarks. - M. leagora is closely related to M. psellophora sp. nov. from Loyalty lsiands and Chesterfield lslands, however they can be distinguished by several features (see Remarks under that species).

SIZE. - The males examined rangcd between 4.0 and 14.4 mm , females between 3.2 and 14.6 mm ; ovigerous females from 5.2 mm .

DISTRIBUTION. - New Caledonia, Loyalty lslands and Chesterfield lslands, between 265 and 580 m .

Munida leptitis sp. nov.

Fig. 27
Material inxamined. - New Catedonia. Btocal : $\operatorname{stn} 82,440 \mathrm{~m}: 1$ \% 5.2 mm , paratype (MNHN-Ga 3287).
Loyally Islands. Musorstom $6: \sin 431,21 \mathrm{~m}: 193.4 \mathrm{~mm}$, holotype (MNHN-Ga 2810).
Etymology. - From the Greek, leptitis, smallness. The name is considered as a substantive in apposition.

Fig. 28. - Munida leptosyne sp. nov, ov. 94.8 mm , holotype from Stil 441 (MuSORSTOM 6) : a, carapace, dorsal view; \mathbf{b}, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right
first walking leg, lateral view,

Description. - Carapace with few secondary striae. Intestinal region without scales. External orbital spine shont, siluated al anterolateral angle of carapace. Branchial margin with 5 small spines. Fourth thoracic sternite wilh few short arcuate striae: fifth to seventh smooth. Abdominal segments unarmed. Second and third segments each with 2 transverse striae. Male with two pairs of gonopods on first and second abdominal segments. Eye large. maximum comeal diameter aboul $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (dislal spines excluded) ending at same level as the cornea, distomesial spine shorter than distolaleral. First segment of antennal peduncle with distomesial spine not reaching end of second segment; distomesial spine on second segment reaching end of third segment. Extensor margin of merus of third maxilliped wilh distal spine. Fixed finger of cheliped with a row of spines along laleral border; movable finger with basal spine. Dactylus of walking legs as long as propodus, with movable spinules along entire venlral margin.

Remarks. - M. leptitis is closely related to M. stia sp. nov. from New Caledonia and Chesterficld 1slands (see below for their relationships).

Distribu'tion. - Loyaliy Islands and New Caledonia, 21 and 440 m.

Munida leptosyne sp. nov.

Fig. 28
Material examined. - New Caledonia. Meurthe Passage, 16.11.1991, 6-t0m: 6 o 5.8 to $6.0 \mathrm{~mm} ; 1 \mathrm{ov}$. I 5.3 mm (MNHN-Ga 3288). - Banya South ls, $18.11 .1991,27 \mathrm{~m}: 1 \mathrm{ov}$. 94.0 mm (MNHN-Ga 3289).

Loyalty Islands. Musorstom $6: \sin 441,80 \mathrm{~m}: 1 \mathrm{ov} . \mp 4.8 \mathrm{~mm}$ (MNHN-Ga 2812).
Chesterfield Istands. Chalcal $1: \sin 29.100 \mathrm{~m}: 1 \delta 6.2 \mathrm{~mm}$ (USNM).
Corall 2 : $\operatorname{stn} 7,63-64 \mathrm{~m}: 1$ ot 4.1 mm (USNM).
TYpes. - One ovigerous female (4.8 mm) from Musorstom 6, $\operatorname{Stn} 441$ (MNHN-Ga 2812) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Greek, leptosyne, thinness, in reference to the small size of the species. The name is considered as a substantive in apposition.

DESCRIPTION. - Carapace with few secondary striae. Inlcstinal region without scales. Exicrnal orbilal spine developed, rather mesial to level of lateral margins of carapace. Branchial margin with 4 spines. Fourth thoracic sternite with several short arcuate striae; fifth to seventh sternites smoolh; lateral parts of seventh sternite with numerous granules. Second abdominal segment with a row of 4 pairs of spines on anterior ridge. Second and hird segmenls each with one transverse stria. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace belween bases of exlernal orbital spines. Basal segment of antennule (distal spines excluded) exceeding cornea, distomesial spine slightly longer than distolateral. First segment of antennal peduncle with distomesial spine reaching end second segment; distomesial spine on second segment nearly reaching end of third segment. Extensor border of merus of third maxilliped with small distal spine. Fixed and movable fingers of cheliped with a row of spines along entire lateral and mesial border, respectively. Dactylus of walking legs slightly shorter than propodus, with movable spinules along entire ventral margin.

Remarks. - M. leptosyne resembles M. evarne Macpherson \& de Saint Laurent, 1991, from French Polynesia (Macpherson \& De Saint Laurent. 1991). They differ in several aspects:

- The new species has the second abdominal segment with a row of 4 pairs of spines on the anterior ridge; only two small median spines in M. evarne.
- The antennular peduncle distinctly exceeds the eyes in M. leptosyne, whereas in M. evarne ends at the same level.

Flg. 29. - Munida lineola sp. nov., $\delta 5.0 \mathrm{~mm}$, holotype fron Saint Vincent Bay : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxiliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking
leg, lateral view.
M. leptosyne is also close to M. gordoae sp. nov. from New Caledonia, Loyalty 1slands, Mathew and Hunter lslands and Chesterfield Islands, but they are easily differenliable by the size of the dislal spines on the basal antennular segment. M. leptosyne has the distomesial spine longer than the distolaleral, whereas in M. gordoae it is shorter. Furthermore, the basal antennular segment is distinctly longer in M. gordoae than in M. leptosyne .

SIZE.- The males examined ranged between 4.1 and 6.2 mm ; females between 4.0 and 5.3 mm ; ovigerous females from 4.0 mm .

DISTRIBUTION. - Loyalty Islands and Chesterficld islands. between 6 and 100 m .

Munida leviantennata Baba, 1988

Munida leviantennata Baba, 1988 : 82 (key), 111, figs 41, 42.
MATERIAL EXAMINED. - Philippines. Musorstom $1: 51 \mathrm{~s} 50,415-510 \mathrm{~m}: 13$ ठे 7.6 to $12.0 \mathrm{~mm} ; 4 \mathrm{ov}$. 99.0 $1011.1 \mathrm{~mm} ; 1$ \& 9.8 mm (MNHN-Ga 2814).

Indonesia. CORINDON $2: \operatorname{stn} 229,411-445 \mathrm{~m}: 3$ of 10.6 to 10.9 mm (MNHN-Ga 2815).
New Caledonia, "Vauban" : 22 ${ }^{\circ} 32.3^{\prime} \mathrm{S}, 166^{\circ} 25.8^{\prime} \mathrm{E}, 350-420 \mathrm{~m}, 06.06 .1979: 2912.7$ and 16.0 mm (MNHN-Ga 2816).

Biocal: $\operatorname{stn} 109,495-515 \mathrm{~m}: 1$ of $16.0 \mathrm{~mm} ; 1$ ov. $\$ 12.9 \mathrm{~mm}$ (MNHN-Ga 2817).
MUSORSTOM $4: \operatorname{stn} 236,495-550 \mathrm{~m}: 3$ o 9.0 to $11.0 \mathrm{~mm} ; 3 \mathrm{ov}$. 99.5 to 11.0 mm (USNM). - Sin 239. $470-$ $475 \mathrm{~m}: 1$ o $13.8 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2819)$. $-\mathrm{Stn} 241,470-480 \mathrm{~m}: 2$ of 9.5 and $13.0 \mathrm{~mm} ; 2 \mathrm{ov}$. 99.7 and $11.9 \mathrm{~mm} ; 2$ Q 8.4 and 9.5 mm (MNHN-Ga 2820). - Stn 246, 410-420 m: 1 ¢ 13.0 mm (MNHN-Ga 2822). - Stn 247, $435-460 \mathrm{~m}$: $1 \delta 14.5 \mathrm{~mm} ; 1 \mathrm{ov} . \& 13.0 \mathrm{~mm}$ (MNHN-Ga 2823).

Lagon : $\operatorname{stn} 1062,300-320 \mathrm{~m}: 1811.9 \mathrm{~mm}$ (MNHN-Ga 2824).
Chesterfield Istands. MUSORSTOM $5:$ sul $387,560-660 \mathrm{~m}: 2$ of 10.4 and 13.3 mm (USNM).
REmarks. - The specimens examined agree quite well with the original description and figures provided by BABA (1988). The number of cardiac spines ranges between 2 and 4, sometimes one hepatic spine is present on each side (absent in the holotype). The supraocular spines (broken in lhe holotype) are divergent and distinetly overreach the cornea. The thoracic sternites are smoolh, without striae, the fourth sternite is anterior-mesially hollowed. The inales have 2 pairs of gonopods.

SIZE. - The males examined ranged between 7.6 and 16.0 mm , females belween 8.4 and 16.0 mm ; ovigerous females from 9.0 mm .

Dis'Iribution. - Philippines, Indonesia, New Caledonia and Chesterfield islands, between 300 and 660 m .

Munida lineola sp. nov.

Fig. 29
Material examined. - New Caledonia. Saimi Vincent Bay : stı $190.22^{\circ} 02^{\prime} \mathrm{S}$, $165^{\circ} 57^{\prime} \mathrm{E}, 135-150 \mathrm{~m}$: $1 \delta 5.0 \mathrm{~mm}$. holotype (MNHN-Ga 3215).

Etymology, - From the Latin, lineola, line, in reference to the lines of granules on the thoracic sternites.
DESCRIPTION . - Carapace with few secondary striac. Inrestinal region wilhout scales. External orbital spine well developed, situated at anterolaleral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few arcuate striae; fifth to seventh sternites smooth; lateral parts of sixth sternite with several vertical rows of small granules; lateral parts of seventh sternite with numerous granules. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second and third segments each with 2 and 1 transverse slriac, respectively. Two pairs of gonopods on first and second abdominal segments. Eyc moderately large, maximum corncal diameter ahout $1 / 3$ length of anterior border of carapace between bases of exlerial orbital spines. Basal segment of antennule
(distal spines excluded) distinctly exceeding conea, dislal spines subequal. Firsı segment of antennal peduncle with dislomesial spine slightly excecding sccond segment; distomesial spine on second segment excceding antennal peduncle. Extensor border of merus of third maxilliped unarmed. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial border, respectively. Dactylus of walking legs slightly shorter than propodus, with movable spinules along nearly entire ventral margin.

REmARKs. - M. lineola is closely related to M. pontoporea sp. nov. from New Caledonia, but they differ in several features (see below undcr the Remarks of M. pontoporea).

The new species is also close to M. pasithea Macpherson \& de Saint Laurent, 1991 from French Polynesia, (MACPHERSON \& DE SAINT LAURENT, 1991). They are casily differentiable by the granulation of the lateral parts of the sixth thoracic sternite. In the new species the granules are scarce and disposed in rows, whereas in M. pasithea lle granules are numerous and homogeneously disposed.

Distribution. - New Catedonia, belween 135 and 1.50 m .

Munida marini sp. nov,

Figs 30, 77
Material examined. - New Caledonia. Biocal: $\sin 67,500.510 \mathrm{~m}: 5 \delta 18.3$ to $25.5 \mathrm{~mm} ; 6 \mathrm{ov}$. 819.7 to $24.0 \mathrm{~mm} ; 2914.0$ to 14.5 mm (MNHN-Ga 2830, 2831 and USNM).

CHALCAL $2: \operatorname{stn} 1,500 \mathrm{~m}: 22$ ot 13.6 to $26.8 \mathrm{~mm} \mathrm{~m}_{\mathrm{i}} 9$ ov. 919.0 to $23.4 \mathrm{~mm} ; 9$ ot 19.4 to 22.6 mm (MNHN Ga2842). - $\operatorname{Sin} 2,500 \mathrm{~m}: 11$ of 7.8 to $24.7 \mathrm{~mm} ; 6$ ov. 921.4 to $25.0 \mathrm{~mm} ; 397.7$ to 23.2 mm (MNHN.Ga 2843 and
 $600 \mathrm{~m}: 1$ \& 17.7 mm (MNHN.Ga 2845).

SMBB $4: \sin 34,515 \mathrm{~m}: 1$ of $16.2 \mathrm{~mm} ; 1 \mathrm{ov} .918 .6 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 28.54)$. - Sin 38, $510 \mathrm{~m}: \mathrm{I}$ ov. 921.6 mm (MNHN.Ga 2855).

Loyaty Islands. Musorstom $6: \sin 413,463 \mathrm{~m}: 1$ б $11.8 \mathrm{~mm} ; 1$ ov. 911.6 mm (MNHN-Ga 2850).
Cliesterfield Islands. Musorstom $5: \sin 388,500.510 \mathrm{~m}: 1$ o 6.5 mm (MNHN-Ga 2856).
Corall 2: stil 16, 500 m: 3 of 7.4108 .6 mm (MNHN-Ga 2846). - Sin 17, $500 \mathrm{~m}: 1 \delta 9.0 \mathrm{~mm}$ (MNHN-Ga 2847).
TYpes. - One ovigerous female of 20.9 mm from Biocal, Sin 67 (MNHN-Ga 2830) has been selected as holotype: the other specimens are paratypes.

Etrmology. - This species is dedicated to Marin Manrtquez from the Instituto de Ciencias del Mar, Barcelona, for his continuous support in my work.

DESCRIPTION . - Carapace wilh two epigastric spines directly behind supraocular spines. Three fongitudinal rows of spincs. Median row of 6 spines : first two on median mesogastric region; third to fifth on cardiac region, sixth spine on posterior transverse ridge. Lateral rows each of 2-4 spines on branchiocardiac boundary. External orbital spine long, situated at anterolateral angle of carapace. Branchial margin with 3 spines, third spine very small or absent. Plerygostomian region with dense and iridiscent long setae. Fourth thoracic sternite with several short arcuate striae; fifth to seventh sternites without striae. Second, third and fourth abdominal segments each with 4 equal-sized spines on amterior transverse ridge; posterior ridge of fourth segment with strong median spine. One pair of gonopods on abdominal segments. Eye moderately large, maximum comeal diameter more than $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal antennular segment (distad spines excluded) not exceeding cornea, distolateral spine longer than distomesial. Distomesial prolongalion of first antennal segment well developed, nearly reaching rostral tip; distomesial spine on second segment reaching end of third segmenl, with small spine on its hase; third segment with small distolateral spine. Merus of third maxilliped with marginal spine near midlength of flexor margin; small distal spine on extensor border. Fixed finger of cheliped biffid distally, movable linger with small spine near tip. Dactylus of walking legs slightly less than $1 / 2$ propodus length, without spinules on ventral horder.

Fig. 30. - Munida marini sp. nov., 920.9 mm , holotype from Stn 67 (BIOCAL) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephatic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped. lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 31. - Munida masi sp. nov., $\delta 10.6 \mathrm{~mm}$, holotype from Stn 173 (Musorstom 4) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d. right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

COLOUR. - Ground colour of carapace and abdomen orange, supraocular spines red; epigastric region dark orange. Chelipeds and walking legs with transverse whitish and red bands; distal part of fingers of chelipeds whitish. proximal part red; dactylus of walking legs whitish.

Remarks. - Murida marini is closely related to M. eminens Baba, 1988. from the Philippines, lndonesia. New Caledonia, Loyalty Islands and Chesterfield lslands (Baba, 1988, sec also above). However, both species differ in the following aspects :

- M. marini has 2 median spines on mesogastric region. absent in M. eminens.
- The cardiac region bears 3 spines in the midline in M. marini, whereas there are only 1-2 spines in M. emineus.
- The posterior margin of the carapace has 2 spines in M. eminens, only one in M. marini.
- The second antennal segment has one additional mesial spine, proximal to the distal spine in M. marini. which is absent in M. eminelus.
- The extensor margin of the merus of the third maxilliped has one distal spine in M. marini, but is unarmed in M. eminens.
M. marimi is also close to M. callirthoe sp. nov. from New Caledonia, Chesterfield lslands and Loyalty Istands. They differ in the following aspects :
- M. callirhoe has one mesogastric spine, whereas M. marini has 2 spines.
- The thoracic sternites have numerous arcuate striae in M. callirthoe; these striae are practically absent in M. marini.
- The distomesial spine on the basal antennular segment is longer than the distolateral in M. callirithoe, but is shorter in M. marini.
- The distomesial spine on the second antennal segment reaches the end of the peduncle in M. callirhoe, but only the end of the second segment in M. marini.
- The dactylus of the walking legs are longer and more slender in M. callirthoe than in M. marini.
- The colour pattern is dilferent in both species (see Figs 77 and 91).

SIZE. - The males examined ranged between 7.8 mm and 26.8 mm , females between 6.5 and 25.0 mm ; ovigerous females from 11.6 mm .

DISTRIBUTtoN. - New Caledonia. Loyalty lslands and Chesterfield lslands, between 463 and 600 m .

Munida masi sp. nov.

Fig. 31
Matertal examined. - New Caledonia. Musorstom 4 : stn 173, 250-290 m: l of 10.6 mm. holotype (MNHN-Ga 2857).

Etymology. - This species is dedicated to J. Mas, of the Instituto de Ciencias del Mar, Barcelona, for his contribution to the biology of marine organisms.

DESCRIPTION. - Carapace with secondary striae between principal striae. Posteriormost stria of carapace not interrupled, medially arcuate. Intestinal region with one scale. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines quite similar in size. Fourth thoracic sternite with few short arcuate striae; fifih to seventh smooth. Second abdominal segment with a row of 3 pairs of spines on anterior ridge. Second and third abdominal segments cach with some transverse striac. Two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corncal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) slightly excceding cornea, with 2 long subequal distal spines. First segment of antennal peduncle with distomesial spine reaching end of second segment; distomesial spine on second segment exceeding antennal peduncle. Extensor margin of merus of third maxilliped with distal spine. Movable and fixed fingers of cheliped
with a row of spines along mesial and lateral margins, respectively. Dactylus of walking legs $2 / 3$ propodus length, with movable spinules along proximal $2 / 3$ of ventral margin.

Remarks. - M. masi resembles M. albiapicula Baba \& Yu, 1987, from Taiwan (BaBA \& Yu, 1987). The two species differ in several features:

- The fixed and movable fingers of the chetiped only have one proximal spine other than sublerminals in M. albiapicula, whereas there are one additional on fixed finger and two on the movable finger in M. masi.
- The dactylus of the walking legs has the spinelets restricted to lhe proximal $2 / 3$ of the ventral border in M. masi, whereas these spinelets are present along the entire venlral border in M. albiapicula .
M. masi is also close to M. psamathe sp. nov. from New Caledonia, Matthew and Hunter Islands (see Renarks under thal species).

Distribution. - New Calcdonia, between 250 and 290 m .

Munida microps Alcock, 1894

Fig. 32
Munida microps - BABA, $1988: 84$ (key), 122 (references and synonymies).
Ma'rertal examined. - Philippines. Musorstom $2: \operatorname{stn} 56,970 \mathrm{~m}: 2 \delta 14.4$ and 15.7 mm (MNHN.Ga 28.58. 3491).

New Caledonia. Biocal : stn 61, $1070 \mathrm{~m}: 2 \delta 7.0$ and 7.6 mm (USNM).
Blogeocal. : stn 297, t230-1240 m: 1810.0 mm (MNHN-Ga 3290).
Ctuesterfield Islands. MUSORSTOM $5: \sin 323,970 \mathrm{~m}: 9$ ס 9.4 to $14.2 \mathrm{~mm} ; 3$ ov. $\% 11.2$ to $11.6 \mathrm{~mm} ; 5$ q 7.3 to 9.4 mm (MNHN.Ga 2860). - Sin $324.970 \mathrm{~m}: 8$ o 8.0 to $13.8 \mathrm{~mm} ; 7$ ov. 98.7 to $13.2 \mathrm{~mm} ; 798.7$ to lt .2 mm (MNHN-Ga 2861).

Rfmarks. - Munida microps was described from specimens collected in the Andaman Sea. The species was posteriously cited in the Arabian Sea, Maldives lslands, off Colombo, Sulawesi and southeastern Australia. between 686 and 1234 m (e.g., Alcock, 1901; Tirmizi, 1966; HatG, 1974; Baba. 1988). Furthermore, Baba (1988) consider that M. microps and M. microps var. lasiocheles Alcock, 1894, are the same species. The species is characterized by the presence of 5 spines on the branchial margin, some spines on the second aldominal segment, the laterat parts of the seventh thoracic sternites smooth, the cornea scarcely broader than the stalk, the anlennular peduncle dislinctly exceeding cornea, the distomesial spine on the basal ankennular segment smaller han the distolaleral, the fixed finger of cheliped only with one spine in addition to subterminal spines and the dactylus of the walking legs with spines along the entire ventral border.

Unfortunatly, in the present paper, 1 have not examined specimens from the type series or type tocality. However, the specimens examined here present several differences with one male (12.0 mm) from the Maldives Islands (John Murray Expedition, Stn 158, BM) identified by TrrmtZI (1966) as M. microps. For instance, the cornea of the male from Maldives is smalter and the basal antennular segment much longer than in the present material. These differences, of specific value in species of the genus Monida, recommend a comparison of the type series with specimens from the different localities in order lo clarify the status of this species.

The colour of the specimens collected in New Catedonia is light pinkish, darker in the gastric region and tips of the filigers of cheliped and dactylus of the walking legs.

The present material was collected in the Philippines, New Caledonia and Chesterfield Islands, belween 970 and 1240 m .

Munida militaris Henderson, 1885

Munida militaris - BABA \& MACPherson, 1991 : 539 (references and synonymies).
Material examined. - New Catedonia. Musorstom $4: \sin 168,720 \mathrm{~m}: 1 才 14.0 \mathrm{~mm}$ (MNHN.Ga 2862).

FIG. 33. - Munida moliae sp. nov., $\% 13.6 \mathrm{~mm}$, holotype from Stn 156 (MUSORSTOM 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Remarks. - The specimen from New Caledonia agrees quite well with the type material (see Baba \& Macpherson, 1991). The closest spccies in the area is M. eclepsis sp. nov. from New Caledonia, but they differ in several characters :

- The distomesial spine on the second antennal segment distinctly exceeds the antennal peduncle in M. eclepsis, whereas this spine is shorter and never reaches the end of the peduncle in M. militaris.
- The fixed finger of cheliped of M. militaris has only one basal spine in addition to the subterminal spines. In the new species the lateral margin has a row of spines.

Distribution. - The species is previously known from Indonesia and Fiji, between 183 and 576 m .

Munida moliae sp. nov.

Fig. 33
MATERIAT. EXAMINED. - New Caledonia. MuSORSTOM $4: \sin 155,500-570 \mathrm{~m}: 11 \delta 8.0$ to $21.0 \mathrm{~mm} ; 7 \mathrm{ov}$. I 10.0 to $16.4 \mathrm{~mm} ; 2 q 9.0$ and $9.6 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 3291)$. - $\operatorname{Sin} 156,530 \mathrm{~m}: 4 \delta 5.0$ to $21.0 \mathrm{~mm} ; 2 \mathrm{ov}$. 912.6 and $14.7 \mathrm{~mm} ; 3$ \& 4.4108 .8 mm (MNHN-Ga 2863, 2864). - Stn $162,535 \mathrm{~m}: 3 \mathrm{j} 12.81016 .4 \mathrm{~mm} ; 3 \mathrm{ov}$. \& 11.4 to $13.7 \mathrm{~mm} ; 1 \% 10.8 \mathrm{~mm}$ (USNM). - Sin $167,575 \mathrm{~m}: 4 \% 7.7$ to $10.6 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2866)$. - Stn $170,485 \mathrm{~m}: 1$ ot 10.5 mm (MNHN Ga 2867) , - $\operatorname{Sin} 180,450 \mathrm{~m}: 5 \delta 12.6$ 1o $17.4 \mathrm{~mm} ; 3 \mathrm{ov}$. 오 12.4 to 14.5 mm (MNHN-Ga 3292). Stn 194, $545 \mathrm{~m}: 16$ ot 8.4 to $14.2 \mathrm{~mm} ; 5$ ov. 99.8 to $12.6 \mathrm{~mm} ; 9 \% 7.4$ to 10.6 mm (MNHN-Ga 3293). - Stn 196 , $460 \mathrm{~m}: 1$ すै $12.6 \mathrm{~mm} ; 1$ ov. ㅇ $15.4 \mathrm{~mm} ; 1$ \& 8.7 mm (MNHN-Ga 2868).

Smab $3: \operatorname{stn} 3,530 \mathrm{~m}: 1$ © $9.7 \mathrm{~mm} ; 1$ \& 8.4 mm (MNHN-Ga 3294).
Smib $5: \operatorname{stn} 91,335-340 \mathrm{~m}: 2$ ov. 85.2 and 5.5 mm (MNHN-Ga 3295).
Loyatty Istands. MUSORSTOM $6: \operatorname{stn} 477,550 \mathrm{~m}: 194.0 \mathrm{~mm}$ (MNHN-Ga 3489). - $\operatorname{Sin} 482,375 \mathrm{~m}: 1 \mathrm{ov}$. \circ o $8.0 \mathrm{~mm} ; 1$ ¢ 12.0 mm (MNHN Ga 2869).

Types. - One male of 13.6 mm from Musorstom 4, Stn 156 (MNHN-Ga 2863) has been selected as the holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to B. Moli, from the Instituto de Ciencias del Mar, Barcelona, for her support in my work.

DESCRIeTION. - Carapace with numerous secondary striae. Intestinal region with scales. External orbital spine well developed, situated at antcrolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few striae; fifth to seventh smooth, Abdominat segments unarmed, with some transverse striae, Two pairs of gonopods present on first and second abdominal segments. Eye large, maximum corncal diameter more than $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) ending at same level as the comea, distomesial spine usually longer than distolateral, occasionally subequal. First segment of antennal peduncle with long distomesial spine exceeding third segment; distomesial spine on second segment exceeding antennal peduncle. Extensor margin of merus of third maxilliped unarmed. Fixed finger of cheliped with a row of spines along lateral margin; movable finger with one basal and one distal spine on mesial margin. Dactylus of walking legs about $1 / 2$ propodus length. with movable spinules along entire ventral margin.

REMARKS. - M. moliae is closely rclated to M. abelloi sp. nov. from Kiribati, however they can be distinguished by several features :

- The maximum corneal diameter in M. moliae is more than $1 / 3$ the length of the anterior border of the carapace between the bases of the external orbitat spines; whereas this ratio is less than $1 / 3$ in M . abelloi.
- The basal antennular segment not excced the cornea in M. moliae, whereas this segment distinctly exceeds the eyes in M. abelloi.
- The movable finger of the cheliped has only one basal and one distal spine in M. moliae, whereas there are several spines between these two spines in M. abelloi.

SIZE. - The males examined ranged between 5.0 and 21.0 mm , females between 4.0 and 15.4 mm ; ovigerous females from 5.2 mm .

Distribution. - New Caledonia, Loyalty lslands, belween 335 and 575 m .

Munida normani Henderson, 1885

Munida Normani Henderson, 1885:408.
Munida normani - Hfnderson, $1888: 129$, pl.13, fig. 5. - Baba, 1988: 83 (key).
Material examined. - New Caledonia. Musorstom 4 : $\operatorname{stn} 198,590 \mathrm{~m}: 1 \% 13.3 \mathrm{~mm}$ (MNHN-Ga 2871).
Fiji Istands. "Challenger" : sln 173, 24.07.1874, $19^{\circ} 09^{\circ} 35^{\prime \prime} \mathrm{S}, 179^{\circ} 41^{\prime} 50^{\prime \prime} \mathrm{E}, 583 \mathrm{~m}: 7$ of 9.7 to $15.0 \mathrm{~mm} ; 3$ 오 9.0 to $11.7 \mathrm{~mm} ; 1$ juv. 7.6 mm (BM).

Remarks. - The specimen collected in New Caledonia agrecs quite well wilh the lypes. However, one of the specimens of the type serics, a juvenile, is somewhat different from the remainder : the spincs on the posterior transverse ridge of the carapace are absent; the branchiocardiac boundary bears 3 spines inslead of 5 as in the other types; also the cardiac region is unarmed inslead of bearing $3-5$ spines as in the remainder.

SIZE. - The males examined (including the type serics) ranged between 9.7 and 15.0 mm ; females between 9.0 and 13.3 mm .

Distribution. - Fiji lsland and New Caledonia, belween 583 and 590 m .

Manida notata sp. nov.

Figs 34, 78
MATERIAL EXAMINED. - New Caledonia. Lagon : $\operatorname{stn} 387,318 \mathrm{~m}: 5$ of 6.0 to $6.5 \mathrm{~mm} ; 4$ ov. of 6.3 to 8.3 mm (MNHN Ga 3310). - Stn 418, $318 \mathrm{~m}: 1$ б 6.9 mm (MNHN Ga 3309). - $\operatorname{Stn} 1152,335 \mathrm{~m}: 2$ \% 7.8 and $8.7 \mathrm{~mm} ; 4 \mathrm{ov}$. \& $7.0109 .0 \mathrm{~mm} ; 3 \& 4.7$ to 5.5 mm (MNHN-Ga 3311).

BIOCAL: $\operatorname{stn} 84,150.210 \mathrm{~m}: 2 \mathrm{ov}$ 。 810.0 and $10.2 \mathrm{~mm}($ MNHN-Ga 3296). - $\operatorname{Stn} 108,335 \mathrm{~m}: 6$ \& 5.7 to 7.7 mm ; 4 ov . 오 5.6 to 7.8 mm (MNHN-Ga 2872). - Stn 105, $335 \mathrm{~m}: 4 \delta 7.6$ to $9.8 \mathrm{~mm} ; 1$; 5.6 mm (MNHN-Ga 3297). Sth 110, $275 \mathrm{~m}: 1$ © $6.5 \mathrm{~mm} ; 4$ ov. 97.0 to 11.0 mm (MNHN Ga 2873).

MUSORSTOM $4: \operatorname{stn} 148,59 \mathrm{~m}: 8$ d 5.7 to $10.5 \mathrm{~mm} ; 5 \mathrm{ov}$. ㅇ 6.5 to $8.6 \mathrm{~mm} ; 1$ \& 7.9 mm (MNHN-Ga 3298). $\operatorname{Stn} 172,275-330 \mathrm{~m}: 14$ © 6.1 to $11.8 \mathrm{~mm} ; 6$ ov. 89.0 to $9.5 \mathrm{~mm} ; 2$ \& 5.0 and 7.3 mm (MNHN.Ga 3299). - Stn 178. $520 \mathrm{~m}: 1$ \& 4.8 mm (MNHN-Ga 2874). - $\operatorname{Stn} 183,280 \mathrm{~m}: 19$ б 6.0 to $10.5 \mathrm{~mm} ; 13 \mathrm{ov}$. o 6.4 to $8.8 \mathrm{~mm} ; 2$ \& 7.8 and 8.4 mm (MNHN Ga 2875 and USNM). - Sin 184, $260 \mathrm{~m}: 1 \mathrm{ov}$. 96.4 mm (MNHN-Ga 3300). - Stn 210, $340-345 \mathrm{~m}$: 1 of 5.1 mm ; 1 \& 4.8 mm (MNHN. Ga 3301). - $\operatorname{Stn} 226,395 \mathrm{~m}: 3$ \& 4.2 to $7.2 \mathrm{~mm} ; 2$ ov. of 8.4 and $9.0 \mathrm{~mm} ; 1$ o 4.5 mm (MNHN Ga 2876). - $\operatorname{Stn} 227,320 \mathrm{~m}: 4$ ¿ 7.5 to $9.0 \mathrm{~mm} ; 1$ ov. 87.0 mm (MNHN-Ga 2877). - Stn 234, $350-$ $365 \mathrm{~m}: 1 \mathrm{ov} .911 .7 \mathrm{~mm}$ (MNHN-Ga 3302). - Stn 235, $405.415 \mathrm{~m}: 1 \delta 8.0 \mathrm{~mm}$ (MNHN-Ga 2878).

Station wilhout number: $22^{\circ} 40^{\circ} \mathrm{S}, 167^{\circ} 10^{\circ} \mathrm{E}, 200-350 \mathrm{~m}, 10.10 .1986: 5$ of 5.7 to 7.7 mm (MNHN-Ga 2879).
CHALCAL 2 : $\operatorname{stn} 69,260 \mathrm{~m}: 2 \mathrm{ov}$, 95.3 and 5.6 mm (MNHN Ga 3479). - $\operatorname{Sin} 83,200 \mathrm{~m}: 1$ ov. 97.3 mm (MNHNGa 2880).

SM1B 5: $\operatorname{stn} 91,335-340 \mathrm{~m}: 1 \& 8.5 \mathrm{~mm}$ (MNHN-Ga 3307). $-\operatorname{Stn} 94,275 \mathrm{~m}: 2$ \% 5.0 and $9.8 \mathrm{~mm} ; 1 \& 8.5 \mathrm{~mm}$ (MNHN.Ga 3308).

Smib 6: str 116, $290.300 \mathrm{~m}: 1$ ov. 98.8 mm (MNHN.Ga 2887). - Stn 120, 310-325 m: 1 \% 6.3 mm (MNHN-Ga 2888). - $\operatorname{Sin} 124,360-405 \mathrm{~m}: 187.0 \mathrm{~mm}$ (MNHN-Ga 2889).-Stn $125,335-350 \mathrm{~m}: 1$ © © $8.0 \mathrm{~mm} ; 2$ ov, of 8.5 and 9.3 min (MNHN Ga 2890). - Stn 126, $320-330 \mathrm{~m}: 2$ of 8.4 and $8.7 \mathrm{~mm} ; 1 \circ 7.2 \mathrm{~mm}$ (MNHN-Ga 2891).

Loyatly Islands. MUSORSTOM $6: \sin 397,380 \mathrm{~m}: 188.3 \mathrm{~mm}$ (MNHN.Ga 3466). - Sti 398, $370 \mathrm{~m}: 4 \delta 9.2$ to 10.1 mm ; 3 ov. 99.0 to 9.5 mm (MNHN-Ga 3306). - Stn $399,282 \mathrm{~m}: 5$ o 7.8 to $10.2 \mathrm{~mm} ; 1$ ov. 99.4 mm (MNHNGa 2882, 2647). - Stn 406, $373 \mathrm{~m}: 2$ ס 6.9 and 9.4 mm (MNHN-Ga 3305). - Stn $417,283 \mathrm{~m}: 1$ ot 10.2 mm (MNHNGa 3485). - Stn 419, $283 \mathrm{~m}: 5$ of 9.2 to $13.4 \mathrm{~mm} ; 3$ o 5.0 to 8.8 mm (MNHN Ga 2883). - Stn $457,353 \mathrm{~m}: 1 \mathrm{ov}$. of 9.6 mm (MNHN-Ga 2884). - Stn 474, $260 \mathrm{~m}: 1$ ov. 911.7 mm (MNHN.Ga 3449). - Stn 477, $550 \mathrm{~m}: 1$ of 4.1 mm (MNHN.Ga 2885). - Stn $481,300 \mathrm{~m}: 2$ \% 8.8 and $10.7 \mathrm{~mm} ; 1 \mathrm{ov} .99 .7 \mathrm{mn}$ (MNHN-Ga 2886).

Chesterfield Islands. Chalcal $1: \operatorname{stn} 3,120-150 \mathrm{~m}: 2$ ov. 97.0 and 8.9 mm (MNHN-Ga 2892). - Stn 5, $400 \mathrm{~m}: 1$ ov. $¢ 8.4 \mathrm{~mm}(M N H N-G a 2893)$. $-\operatorname{Stn} 14,246 \mathrm{~m}: 1$ d $6.6 \mathrm{~mm} ; 1 \mathrm{ov}$. 오 7.6 mm (MNHN-Ga 2894). -
$\operatorname{Stn} 31,230 \mathrm{~m}: 2$ © 5.8 and $6.7 \mathrm{~mm} ; 3 \mathrm{ov} . q 6.8 \mathrm{tof} 8.3 \mathrm{~mm}$ (MNHN-Ga 2895). - Stn 32, $350 \mathrm{~m}: 1 \propto 8.7 \mathrm{~mm}$ (MNHNGa 2896). - $\operatorname{Stn} 35,210 \mathrm{~m}: 1 \mathrm{ov} .95 .8 \mathrm{~mm}$ (MNHN.Ga 3484).

MUSORSTOM $5: \operatorname{sln} 250,850 \mathrm{~m}: 2$ d 5.6 and $5.7 \mathrm{~mm} ; 3 \mathrm{ov}$, 우 5.3 to $7.0 \mathrm{~mm} ; 1$ ¢ 7.2 mm (MNHN-Ga 2897). $\operatorname{Stn} 255,280.295 \mathrm{~m}: 1 \mathrm{ov}$. 85.3 mm (MNHN-Ga 2898). - $\operatorname{Stn} 263,150-225 \mathrm{~m}: 2 \mathrm{ov} .96 .7$ and 7.3 mm (MNHN.Ga 3480). - $\operatorname{Sin} 268,280 \mathrm{~m}: 2$ \% 5.4 and $5.5 \mathrm{~mm} ; 1$ ov. $\& 4.5 \mathrm{~mm}$ (MNHN-Ga 2899). - Stn 269, 250-270 m : 1 ठ 4.3 mm (MNHN-Ga 2900). - Stn 276, 258-269 m: 1 ठ 7.2 mm (MNHN-Ga 3474). - Stn 288, $270 \mathrm{~m}: 1 \mathrm{ov} .97 .0 \mathrm{~mm}$ (MNHN-Ga 3486). - $\operatorname{Stn} 289,273 \mathrm{~m}: 1$ ठ $6.1 \mathrm{~mm} ; 3$ ov. 85.5 to $8.0 \mathrm{~mm}($ MNHN-Ga 2901). - $\operatorname{Stn} 300,450 \mathrm{~m}: 2$ ot 7.2 and 8.5 mm ; 1 ov. $\$ 8.0 \mathrm{~mm} ; 1$ o 7.8 mm (MNHN-Ga 2902). - Stn 301, $487.610 \mathrm{~m}: 1$ o 3.4 mm (MNHN-Ga 2903). - $\operatorname{Stn} 304,385-420 \mathrm{~m}: 2 \delta 6.2$ and 6.4 mm (MNHN-Ga 3467). - $\operatorname{Stn} 328,355-340 \mathrm{~m}: 1 \mathrm{ov}$. $97.5 \mathrm{~mm} ; 1$ 우 4.2 mm (MNHN Ga 2904). - $\operatorname{Stn} 329,320 \mathrm{~m}: 185.7 \mathrm{~mm}$ (MNHN-Ga 2905). - $\operatorname{Stn} 332,400 \mathrm{~m}: 109.6 \mathrm{~mm} ; 3 \mathrm{ov}$. o 7.6 to $9.8 \mathrm{~mm} ; 296.5$ and 8.3 mm (MNHN-Ga 2907). - $\operatorname{Sin} 347,245-252 \mathrm{~m}: 189.0 \mathrm{~mm} ; 1 \mathrm{ov}$. 97.7 mm (MNHN. Ga 3475). - Sin $348,260 \mathrm{~m}: 1$ of 5.8 mm (MNHN-Ga 2906). - Stn $349,275 \mathrm{~m}: 1$ § 4.2 mm (MNHNGa 2908). $\operatorname{Stn} 353,290 \mathrm{~m}: 1$ © 5.0 mm (MNHN-Ga3497). - $\operatorname{Stn} 361,400 \mathrm{~m}: 5 \delta 5.2106 .0 \mathrm{~mm} ; 1$ ov. $97.2 \mathrm{~mm} ; 194.6 \mathrm{~mm}$ (MNHN.Ga 3404). - $\operatorname{Stn} 362,410 \mathrm{~m}: 1 \mathrm{ov} .96 .0 \mathrm{~mm}$ (MNHN. Ga 3482). - $\operatorname{Stn} 375,300 \mathrm{~m}: 4 \delta 5.1$ to $8.0 \mathrm{~mm} ; 4 \mathrm{ov}$. © 6.3 to 8.0 mm (MNHN-Ga 2909). - Stn $377,260-270 \mathrm{in}: 2 \mathrm{ov}$. 96.1 and $6.7 \mathrm{~mm} ; 196.0 \mathrm{~mm}$ (MNHN-Ga 3491).

CORALL 2: $\sin 114,217 \mathrm{~m}: 1$ o $5.3 \mathrm{~mm} ; 1$ ov. 94.7 mm (MNHN-Ga 3303). - Stn $129,215 \mathrm{~m}: 1$ of 8.3 mm (MNHN-Ga 3304). - Sin 131, $215.217 \mathrm{~m}: 16 \delta 5.5$ to $8.8 \mathrm{~mm} ; 12 \mathrm{ov}$. 96.0 to $8.3 \mathrm{~mm} ; 288.5$ and $8.6 \mathrm{~mm}(\mathrm{MNHN}$ Ga 2881).

TYPES. - The ovigerous female of 9.4 mm from Musorstom 6. Sin 399 (MNHN-Ga 2882) has been selected as holotype; the other specimens are paratypes.

ETYMOLOGY. - From the Latit, notatio. marking, in reference to the spots on the carapace and abdominal segments.

DESCRIPTION. - Carapace with secondary striae present. Intestinal region without scales. External orbital spine long, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourlh and fifth thoracic sterntes with few short arcuate striae; sixth and seventh sternites smooth. Second abdominal segment usually unarmed, occasionally with $1-2$ spines on each lateral side. Second and lhird abdominal segments each with several transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum comeal diameter about $1 / 3$ length of anterior border of carapuce between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea, distomesial spine longer than distolateral. First segment of antennal peduncle with long distomesial spine reaching end of third segmem; dislonesial spine on second segment exceeding antennal peduncle. Extensor border of merus of third maxilliped with small distal spine. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial borders, respectively. Dactylus of walking legs half as long as propodus. with movable spinules along ventral margin, distal third unarmed.

Colour. - Ground colour of carapace and abdominal segments light orange. Large red spots scatered on dorsal surface of carapace. Striae reddish. Rostrum and supraccular spines orange. Second to fourth abdominal segments with median and lateral red spols. Chelipeds and walking legs light orange, spines and some granules reddish. Distal parl of fingers of chelipeds and dactylus of walking legs white.

REMARKS. - M. notata is closely related to M. acantha sp. nov. from New Caledonia, Loyalty Islands and Aloll de Surprise, but they differ in several aspects:

- The third thoracic sternite in M. notata is much longer relative to width and more distinctly convex on the anterior margin than in M. acantha.
- M. acantha has the dislomesial spine on the antennal basal segment exceeding the antennal peduncle, whereas this spine never exceeds the peduicle in M. notata.
- The dactylus of the walking legs has spines along the entire ventral border in M. acantha, unarmed on the terminal third in M. notata.

Size. - The males examined ranged between 3.4 and 13.4 mm , lemales between 4.1 and 11.7 mm ; ovigerous female from 4.5 mm .

Distribution. - New Caledonia, Loyalty Islands and Chesterfield Islands, between 120 and 850 m .

FIG. 34. - Munida notata sp. nov., ov. 99.4 mm , holotype from Stn 399 (MUSORSTOM 6) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing anteunular and antennal peduncles; d, right third maxilliped. lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first
walking leg, lateral view.

Munida ocyrhoe sp. nov.

Figs 35, 79
MATERIAL EXAMINED. - New Caledonia. BIocAl, $\operatorname{stn} 67,500 \mathrm{~m}: 1 \% 28.4 \mathrm{~mm} ; 1 \mathrm{ov}$. 오 $19.8 \mathrm{~mm} ; 2$ ㅇ 13.3 and 15.8 mm (MNHN. Ga 3313).

MUSORSTOM $4: \operatorname{stn} 194,550 \mathrm{~m}: 1$ o $10.8 \mathrm{~mm} ; 1$ ㅇ 12.7 mm (MNHN-Ga 3316). - Stn 198, $590 \mathrm{~m}: 1$ 여 10.8 mm (MNHN Ga 2756). - $\operatorname{Stn} 215,485-520 \mathrm{~m}: 1$ \& 24.4 mm (MNHN-Ga 3314). $-\operatorname{Stn} 216,490-515 \mathrm{~m}: 3$ if 17.0 to 29.4 mm (MNHN-Ga 2758). - $\operatorname{Stn} 238,500.510 \mathrm{~m}: 1$ 여 $25.8 \mathrm{~mm}(M N H N-G a 2759)$. $-\operatorname{Stn} 240,475-500 \mathrm{~m}: 287.9$ and 8.2 mm (MNHN Ga 2910).

SMIB 2 : sta $10,490-495 \mathrm{~m}: 3$ o 8.2 to $12.8 \mathrm{~mm} ; 1$ ov. $\& 24,6 \mathrm{~mm} ; 2$ \& 12.2 and 15.7 mm (MNHN Ga 2760). $\operatorname{Sin} 26,500-535 \mathrm{~m}: 1$ 오 14.2 mm (USNM).

Chalcal $2: \sin 1,500.580 \mathrm{~m}: 2$ \% 13.5 and $15.3 \mathrm{~mm} ; 4 \mathrm{ov}$. 915.4 10 $27.7 \mathrm{~mm} ; 2 \$ 9.8$ and 20.0 mm (MNHN-Ga 2912 and USNM). - Sin 2, $500 \mathrm{~m}: 1$ o $21.0 \mathrm{~mm} ; 2 \% 19.4$ and 28.0 mm (MNHN-Ga 3317). - Sin 74, $650 \mathrm{~m}: 1$ \& 10.5 mm (MNHN-Ga 2913).

Smib $3: \operatorname{stn} 12,470 \mathrm{~m}: 1 \mathrm{ov}$. 오 12.4 mm (MNHN. Ga 3315).
Smib $4: \sin 34,515 \mathrm{~m}: 1$ б $20.3 \mathrm{~mm}(M N H N-G a 3320)$. $\operatorname{Sin} 38,510 \mathrm{~m}: 1$ 916.0 mm (MNHN-Ga 3318). $\operatorname{Stn} 39,560 \mathrm{~m}: 1 \mathrm{ov}$. ㅇ 26.4 mm (MNHN.Ga 3319). - $\operatorname{Sin} 62,490.540 \mathrm{~m}: 1$ ov. 9.25 .0 mm (MNHN-Ga 2914).

Chesterfield lslands. Musorstom $5: \operatorname{stn} 355,580 \mathrm{~m}: 197.6 \mathrm{~mm}$ (MNHN-Ga 2915).
TYpes. - Onc ovigerous female of 25.0 mm from Smib 4, Sin 62, (MNHN-Ga 2914) has been selecled as holotype; the other specimens are paratypes.

Etymotogy. - The name refers lo one of the Occanids of the Greek mythology (Ocyrhoë).
DESCRIPTION. - Carapace with numerous secondary striac. Intestinal region with small scales. Gastric region with 2 epigastric spines placed behind supraocular spincs. Each branchiocardiac boundary with 3 spines in longitudinal row, first postcervical, well developed, second small, rather close to first, third also small, somewhat poslerior to level of cardiac transverse clevation. Posterior lransverse ridge armed wilh 2 median spines. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Thoracic sternites with numerous striac. Second, third and fourth abdominal segments each with 4 spines on anterior lransverse ridge; posterior ridge of fourlh scgmenl unarmed. Males with gonopods absenl from firsl abdominal segment. Eye moderately large, maximum corncal diameter $1 / 3$ lenglh of anlerior border of earapace belween bases of exlernal orbital spincs. Basal antennular segment (distal spines exeluded) not excceding cornea, dislomesial spine distinclly longer than distolateral. First anlennal segment moderately produced on mesia! margin, slighty exceeding second segment; distomesial spine on second segment reaching end of peduncle; third segmenl with distomesial spine. Exiensor border of merus of third maxilliped unarmed. Fingers of cheliped distatly curving and crossing; fixed finger with distal spine. Daclylus ol walking legs with dorsal border slighlly concave, ventral border convex, with spinules restricted to median portion.

CoLOUR. - Ground colour of carapace and abdomen orange; rostrum whitish; spines on carapacc and abdomen reddish. Chelipeds orange; proximal $2 / \beta$ of fingers reddish, distal third whitish. Proximal half of propodus of walking legs red, distal half whitish; dactylus whitish.

REmARKS. - M. ocyrhoe is closely related to M. laurentae sp. nov. from New Caledonia, Loyalty lslands. Matthew and Hunter Islands and Chenterfield Islands described above. They differ in several characters:

- The rostrum and the supraocular spines are more slender in M. laurentae than in M. ocyrhoe.
- The mesial spines on both the second and third antennal segments distinctly exceed the antennal peduncle in M. laurentae, whereas the mesial spine on the second segment reaches the end of the antennal pedunele and the spine on the third segmen never exceeds the antennal peduncle in M. ocyrhoe.
- The merus of the third maxitliped is unarmed on the extensor margin in M. ocyrhoe, instead of having a distinct distal spine as in M. laurentae.
- The colour patlens are quite differenl (see Figs 78 and 91).

FlG. 35. - Munida ocyrhoe sp, nov, ov. 925.0 mm , holotype from $\operatorname{Stn} 62$ (SMIB 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg. lateral view; g, dactylus of right
first walking leg, lateral view.
M. ocyrhoe is also related to M. pilosimanus Baba, 1969, from Tosa Bay (typc locality). Okinawa, KyushuPalau Ridge and Sulu Archipelago (BABA, 1988). The comparison of the new specics with specimens from Kyushu-Palau Ridge (see Remarks under M. laurentae for the material examined) shows several small but constant diflerences:

- The parahepatic spincs are well devcloped in M. pilosimanus, very small in the new specics.
- The frontal margins are oblique in the new species, transverse in M. pilosimanus.
- The striae on the thoracic sternites are more numerous in M. ocyrhoe, than in M. pilosimanus.

Size. - The males cxamined ranged between 8.2 . and 28.4 mm ; females from 7.6 and 29.4 mm ; ovigerous females from 12.4 mm .

DISTRIBUTION. - New Caledonia and Cheslerfield Islands, beiween 470 and 650 m .

Munida olivarae sp. nov.
Figs 36, 80
MATER1AL. EXAMINED. - New Catedonia. Lagon : $\operatorname{stn} 433,40.67 \mathrm{~m}: 1 \delta 3.2 \mathrm{~mm} ; 1$ ov. 84.8 mm (USNM). $\operatorname{Stn} 495,80 \mathrm{~m}: 2$ ठ 3.9 and 5.1 mm (MNHN-Ga 2916).

Passe de ta Merthe, $6.10 \mathrm{~m}, 16.11 .1991: 1 \mathrm{ov} .95 .0 \mathrm{~mm} ; 2.95 .0$ and 5.3 mm (MNHN.Ga 3321).
Loyatty Istands. MUSORSTOM 6: stn $430,30 \mathrm{~m}: 1$ o $4.9 \mathrm{~mm}(\mathrm{MNHN} \cdot \mathrm{Ga} 2918)$. - $\operatorname{Sm} 436,33 \mathrm{~m}: 2$ of 3.8 and 6.3 mm (MNHN-Ga 2919, 2920). - Sin 437, $31 \mathrm{~m}: 1 \delta 5.2 \mathrm{~mm}$ (MNHN-Ga-2921).

Matthew and Hunter Islands. Volsmar : $\operatorname{stn} 60,190 \mathrm{~m}: 1 \% 4.4 \mathrm{~mm} ; 2 \mathrm{ov} .94 .0$ and 4.3 mm (MNHN.Ga 2922).

Types. - Onc male of 6.3 mm from Musorstom 6, Sin 436 (MNHN-Ga 2919) has been selected as holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to M. P. Olivar of the fustituto de Ciencias del Mar. Barcelona, for her valuable contribulions to the Namibian marine fauna.

DESCRIPTION. - Carapace with few secondary striae between main striae. Intestinal region without scales. Frontal margin distinctly oblique. External orbital spine shorl, mesial to level of lateral margin. Branchial margin with 5 spines. Fourth thoracic sternite with few short arcuate striae; fifth to seventh smooth. Abdominat segments unarmed. Second and third abdominal scgments each with onc transverse stria. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum corneal diametcr aboul $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (dislal spines excluded) ending at same level as the cornca, distomesial spine longer than distolaleral. First segment of antennal peduncle with distomesial spine not reaching end of second segment; distomesial spinc on second segment reaching end of third scgment. Exiensor border of merus of third maxilliped with distal spinc. Fixed and movable fingers of cheliped with a row of spines along taleral and mesial margin. respectively. Dactylus of walking legs slightly shorter than propodus, with movable spinules along entire veniral margin.

CoLour, - Ground colour ol' carapace and abdominal segments red. Epigastric, hepatic, anterior branchial and cardiac regions whitish. Rostrum and supraocular spines orange. Dorsal side of antennal peduncles red. Second to fourth abdominal scgments with white spots. Chelipeds and walking legs with transverse red and white bands. Palm and proximal half of fingers white, with one red spot; distal half of fingers orange. Dactylus of walking legs reddish.

Remarks. - M. olivarae is closely related to M. chinata sp. nov. from the Philippines. New Calcdonia and Chesterfield Islands, described above, and to M. roshanei Tirmizi, 1966. from the Red Sca and Northwestern Indian Occan (TiRMIZ1, 1966).

FIG. 36. - Munida olivarae sp. nov , $\delta 6.3 \mathrm{~mm}$, holotype from $\operatorname{Stn} 436$ (MUSORSTOM 6) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, slowing antennular and antemal peduncles; d, right third maxilliped, Iateral view; e. right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right
first walking leg, lateral view.

The examination of the types of M. roshanei (Gutf of Oman, hololype, $\delta 4.7 \mathrm{~mm}$; Gulf of Aden, paratype, δ $4.5 \mathrm{~mm}, \mathrm{BM}$) and additional material (Gulf of Suez, $\delta 5.0 \mathrm{~mm}, \mathrm{MNHN}-\mathrm{Ga} 770$) shows that this species is easity differentiable from the two new species by the presence of numerous striac on the thoracic sternites and the absence of spines on the fingers of the chelipeds. In M. clinata and M. olivarae the thoracic sternites are smooth, without striac and the movable and fixed fingers of the chelipeds have a row of spines along the mesial and lateral borders, respectively.
M. olivarae can be distinguished from M. clinata by the following features :

- The distal spines on the basal segment of the antennular peduncle are subequal in M. clinata, whereas the distomesial spine is longer than the distolateral in M. olivarae.
- The patm of the cheliped has more spines on the dorsal side in M. olivarae than in M. clinata.
- The propodus of the walking legs in M. olivarae is slightly longer than the dactylus, whereas the propodus is about 1.5 times the dactylus length in M. cinata.

SIZE. - The males examined ranged between 3.2 and 6.3 mm , the females between 4.0 and 5.3 mm ; ovigerous female from 4.0 mm .

Distribution. - New Caledonia, Loyaly lslands and Mathew and Hunter Islands, between 6 and 190 m .

Munida pagesi sp. nov.

Fig. 37
MATER1AL EXAMINED. - New Caledonia. Lagon : stn $904,250.300 \mathrm{~m}: 1 \%$ to.0 mm (MNHN-Ga 2928). - Stn $993,375.400 \mathrm{~m}: 1$ ㅇ 13.0 mm (MNHN-Ga 3324).

B1OCAL : Sin 108, $335 \mathrm{~m}: \mathrm{t}$ Q 6.8 mm (MNHN-Ga 2923). - Stn 109, $495 \mathrm{~m}: 2 \% 9.8$ and $12.1 \mathrm{~mm} ; 1 \mathrm{ov}$. of $17.8 \mathrm{~mm} ; 3$ ㅇ 10.0 to 11.2 mm (MNHN-Ga 3322).

MUSORSTOM $4: \sin 236,495-550 \mathrm{~m}: 195.3 \mathrm{~mm}$ (USNM). - $\operatorname{Sin} 239,470.475 \mathrm{~m}: \mathrm{t}$ 甲 t 3.7 mm (MNHN-Ga 3325). - $\operatorname{Stn} 241,470.480 \mathrm{~m}: 5 \delta 8.3$ to $14.1 \mathrm{~mm} ; 3$ ov. $99.71013 .0 \mathrm{~mm} ; 2910.8$ and 19.8 mm (MNHN-Ga 3326). $-\mathrm{Stn} 242,500.550 \mathrm{~m}: 1$ б' to. 2 mm ; tov. $\frac{7}{} 18.5 \mathrm{~mm}$ (MNHN.Ga 2925, 2926). - $\operatorname{Sin} 246,410-420 \mathrm{~m}: \mathrm{t}$ ov. 9 9.0 mm (USNM). $-\operatorname{Stn} 247,435-460 \mathrm{~m}: 3$ of t 2.3 to $20.3 \mathrm{~mm} ; 4 \mathrm{ov}$. 913.4 to 20.4 mm (MNHN Ga 3327).

Loyalty Istand. MuSORSTOM $6: \operatorname{stn} 483,600 \mathrm{~m}: \mathrm{t} 97.6 \mathrm{~mm}$ (MNHN.Ga 3323).
Types. - The ovigerous female of 18.5 mm from Musorstom 4, Sin 242 (MNHN-Ga 2925) has been selected as holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to F. Pages of the Instituto de Ciencias del Mar, Barcelona, for his support to systematic studies.

DESCRIPTION. - Carapace with numerous secondary striae. Intestinal region with numerous scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth and fifth thoracic sternites with numerous shorl arcuate striae; sixith and seventh smooth; fourth sternite anteriormesially hollowed. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second and third abdominal segments each with some transverse striac. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum corneal diameter slightly more than $1 / 3$ lengih of anterior border of carapace between bases of external orbital spines. Basal segment of antennute (distal spines excluded) exceeding cornea, distomesial spine shorter than distotateral. First segment of antennal peduncle with distomesial spine slightly exceeding end of second segment; distomesiat spine on second segment exceeding antennat peduncle. Extensor margin of merus of third maxilliped unarmed. Movable and fixed fingers of cheliped with a row of spines along mesial and lateral borders, respectively. Dactylus of walking legs $3 / 4$ length of propodus, with movable spinules along ventral margin, terminal third unarned.

Remarks. - M. pagesi is closely related to M. sacksi Macpherson, 1993, from the Phitippines and New Caledonia (MACPHERSON, 1993). The 1wo species can be easily distinguished by the following constant characters:

- The carapace is distinctly more convex in M. pagesi than in M. sacksi.

FIG. 37. - Munida pagesi sp. nov., ov. 918.5 mm, holotype from Stn 242 (Musorstom 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view: g. dactylus of right
first walking leg, lateral view.

- If specimens of similar sizes of the two species are compared, the carapace and the abdominal segments dislinctly have more secondary striae in M. pagesi Ihan in M. sacksi.
- The fourth and fifith Ihoracic sternites in M. pagesi have numerous short arcuate striac; in M. sacksi these sternites are smooth.

S12E. - The males examined measured betwenn 8.3 and 20.3 mm ; the females ranged between 5.3 and 20.4 mm ; ovigerous females from 9.0 mm .

DISTRIBUTION. - New Caledonia and Loyalty lslands, between 250 and 600 m .

Munida pontoporea sp. nov.

Fig. 38
Material examined. - New Caledonia. Corall 2 : stn 162, 203-208 m:1ov. 910.9 mm , holotype (MNHN. Ga 2944).

Etymology. - The name refers to one of the Nercids of the Greck mylhology (Pontoporea).
DESCRIPTION. - Carapace with secondary striae. Intestinal region with one scalc. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few arcuate striae; lateral parts of sixth and seventh thoracic sternites with many small granules. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second and third abdominal segments each with 3 transverse striac. Eye moderately large, maximum corneal diameter abour $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of anrennule (distal spines excluded) distinctly exceeding cornea, distomesial spine slightly longer than distolateral. First segment of antennal peduncle with distomesial spine exceeding second segment; distomesial spine on second segment distinctly exceeding antennal peduncle. Extensor border of merus of third maxilliped unarmed. Movable and fixed fingers of cheliped with several spines along mesial and lateral borders, respectively. Dactylus of walking legs more than $1 / 2$ propodus length, with movable spinules along entire ventral margin.

Remarks. - M. pontoporea is chosely related to M. taenia sp. nov. from New Caledonia and Chesterfield Islands (see betow, under the Remarks of M. taenia for the differences between these species), and M. lineola sp. nov. from New Caledonia. The latter differs from M. pontoporea in the following aspects:

- The granules of the lateral parts of the thoracic sternites form several rows in M. lineola, whereas they are homogeneously scailered in M. pontoporea.
- The distomesial spine on the basal antennular segment is longer than the distolateral in M. pontoporea; whereas these spines are subcqual in M. lineola.

DISTR1BUTION. - New Caledonia. belween 203 and 208 m .

Munida proto sp. nov.
Fig. 39
MATERIAL EXAMINED. - New Caledonia. Smib $5: \operatorname{stn} 82,155 \mathrm{~m}: 1$ ov. 94.4 mm (USNM).
Loyalty Islands. MUSORSTOM $6: \operatorname{stn} 481,300 \mathrm{~m}: 1$ ov. 95.9 mm (MNHN.Ga 2945).
Chesterfield Islands. Musorstom $5: \sin 274.285 \mathrm{~m}: 1$ © 4.0 mm (MNHN.Ga 2946). - Stn 282, 226-230 m : 1 ov . 94.0 mm (MNHN-Ga 2947). $-\operatorname{Stn} 30 \mathrm{t}, 487-610 \mathrm{~m}: 1$ d 3.8 mm (MNHN-Ga 3500). $-\operatorname{Stn} 305,430.440 \mathrm{~m}$: 2 of 3.6 and 4.3 mm (MNHN.Ga 3503). - Stn 339. $380-395 \mathrm{~m}: 2$ ot 4.1 and $4.5 \mathrm{~mm}: 195.0 \mathrm{~mm}$ (MNHN.Ga 3501).

TYPES. - One ovigerous female of 5.9 mm from Musorstom 6. Sin 481 (MNHN-Ga 2945) has been selected as the holotype; the other specimens are paratypes.

FIG. 38, - Munida pontoporea sp, nov., ov. 910.9 mm , holotype from Stn 162 (Corail 2) ; a, carapace, dorsal view: b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right
first walking leg, lateral view, first walking leg, lateral view,

FIG. 39. - Munida proto sp. nov., ov, $\$ 5.9 \mathrm{~mm}$, holotype from $\operatorname{Stn} 481$ (Musorstom 6) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

ETymology. - The name refers to one of the Nereids of the Greck mythology (Proto).
DESCRIPTION. - Carapace with secondary striae. Intestinal region often with small scales. External orbital spine well developed, situated al anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few striae; fifth to seventh smooth. Abdominal segments unarmed. Sccond and third abdominal segments cach with several transverse striac. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum corncal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spincs. Basal segment of antennule (distal spines excluded) slightly excceding cornea, distomesial spine small distinctly shorter than distolateral. First segment of antennal peduncle with distomesial spine reaching end of secound segment; distomesial spine on second segment exceeding third segment. Extensor border of merus of third maxilliped with distal spine. Fingers of cheliped with a row of spincs along mesial and lateral margins of movable and fixed finger, respectively. Walking legs about 2.5 times carapace lengh; dactylus about $1 / 2$ propodus length, with movable spinules along ventral margin, distal third unarmed.

Remarks. - M. proto is closely related to M. stia sp. nov, from New Caledonia and Chesterfield Islands. However, both species are casily differentiable by the leng1h of the chelipeds and walking legs, distinctly more longer and slenderer in M. proto than in M. stia.

Size.- The males cxamined measured between 3.6 and 4.5 mm , females between 4.0 and 5.9 mm ; ovigerous females from 4.4 mm .

Distribution. - New Caledonia, Loyalty Islands and Chesterfield lslands, between 155 and 610 m .

Munida psamathe sp. nov.

Figs 40, 93
Material examined. - New Caledonia. Biocal : stn $51,680.700 \mathrm{~m}: 1$ of $3.7 \mathrm{~mm} ; 1$ \& 4.6 mm (MNHN-Ga 3508).

MUSORSTOM 4 : $\sin 242,500-550 \mathrm{~m}: 1$ © 5.1 mm (MNHN-Ga 2948).
Chalcal $2: \sin 73,573 \mathrm{~m}: 7$ § 3.8 to $5.8 \mathrm{~mm} ; 4 \mathrm{ov}$. 83.3 to 4.8 mm (MNHN.Ga 2949, 2950). - Stn 74, 650 m : 984.5 to $6.5 \mathrm{~mm} ; 8 \mathrm{ov}$, $\$ 4.0$ to 4.7 mm (MNHN Ga 2951). - $\operatorname{Sin} 75,600 \mathrm{~m}: 6 \delta 4.7106 .3 \mathrm{~mm} ; 3 \mathrm{ov}$. 83.6 to $4.9 \mathrm{~mm} ; 1$ ㅇ 4.8 mm (USNM).

SMiB $3: \operatorname{stn} 2,530 \mathrm{~m}: 1$ đ 5.6 mm (MNHN-Ga 2953).
Mathew and Hunter Islands. VolSmar : stn $5,700 \mathrm{~m}: 6 \delta 3.2$ to $5.3 \mathrm{~mm} ; 4 \mathrm{ov} .93 .6$ to $4.8 \mathrm{~mm} ; 294.4$ and 4.8 mm (MNHN.Ga 2954).

TYPES. - Onc male of 5.8 mm from ClialCal 2, Stn 73 (MNHN-Ga 2949) has been selected as hololype: the other specimens are paratypes.

Etymology. - The name refers to one of the Nercids of the Greek mythology (Psamathe).
DESCRIPTION. - Carapace with few secondary striac. Intestinal region without scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Thoracic sternites smootl. Second abdominal segment with 2 median spines on anterior ridge. Sccond and third abdominal segments each with one transverse stria. Males with 1wo pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) slightly exceeding cornea, distomesial spine small, distinctly shorter than distolateral. Antennal peduncle reduced; first segment with short distomesial spine reaching end of sccond segment; distomesial spinc on second segment short, distinctly not reaching end of third segment. Extensor border of merus of third maxilliped with distal spine. Fingers of cheliped unarmed. Dactylus of walking legs half as long as propodus, with movable spinules along entire ventral margin.

Fig. 41. - Munido pseliophora sp. nov., of 9.0 mu, holotype from $\operatorname{Stn} 419$ (Musorstom 6) : a, carapace, dorsal view; b, sterna! plastron; c, ventral view of cephalic region, showing antennula and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right
first walking leg, lateral view.

COLOUR. - Ground colour of carapace and abdominal segments orange, gastric region reddish. Rosirum and supraocular spines orange. Chelipeds and walking legs orange. Distal part of fingers of chelipeds and daclylus of walking legs white.

Remarks. - M. psamathe is closely related to M. masi sp. nov. from New Caledonia described above. The two species are easily differenliable by several constant characters :

- The carapace and abdominal segments have more secondary striae in M. masi than in M. psamathe.
- The second abdominal segment bears 1 wo median spines in M. psamathe, instead of 6 spines in M. masi.
- The distomesial spine on the lateral antennular segmenl is distinctly shorter than the distotateral in M. psamathe, whereas both spines are subequal in M. masi.
- The anlennal peduncle is reduced in M. psamathe, whereas is well developed in M. masi.
- The fingers of cheliped are unarmed in M. psamathe, whereas the fingers are armed with some spines in M. masi.
- The dactylus of the walking legs in M. masi is unarmed on the distal third of the ventral border, whereas the spines are along the entire ventral margin in M. psamathe.

Stze. - The males examined ranged belween 3.2 and 6.5 mm , females between 3.3 and 4.9 mm ; ovigerous female from 3.3 mm .

DISTRIBUYION. - New Caledonia, Mathew and Hunter Islands, between 500 and 700 m .

Munida pseliophora sp. nov.

Figs 41, 94
MATERIAL EXAMINED, - Loyatty Islands. Musorstom $6: \operatorname{stn} 419,283 \mathrm{~m}: 5 \% 8.3$ to $9.4 \mathrm{~mm} ; 3 \mathrm{ov}$. 97.7 to $9.6 \mathrm{~mm} ; 2 \% 8.3$ and 8.5 mm (MNHN Ga 2955, 2956).

Chesterfield Istands. Musorstom $5: \operatorname{stn} 258,300 \mathrm{~m}: 2 \mathrm{ov} .95 .6$ and 6.0 mm (MNHN-Ga 2957). - Str 267 , $285 \mathrm{~m}: 1$ \& 3.2 mm (MNHN.Ga 2958). - Stn 274, $285 \mathrm{~m}: 1$ ov. 94.6 mm (MNHN•Ga 2959).

Types, - The male (9.0 mm) from Musorstom 6. Sin 419 (MNHN-Ga 2955) has been selected as holotype; the olher specimens are paratypes.

Etymology. - From the Greek, pseliophoros, carrying a bracelet, in reference to the red band on the posterior half of the carapace.

DESCRIPTION. - Carapace with few secondary striae. Posterior striae not interrupted on intestinal region. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with some striae; fifth to seventh sternites smooth. Abdominal segments unarmed. Second and third abdominal segments each with 2-3 transverse striae. Mates wilh two pairs of gonopods on lirsl and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace hetween bases of external orbital spines. Basal segment of antennute (distal spines excluded) slighty exceeding the level of cornea, with 2 subequal distal spines. Firsl segment of antennal peduncle wilh long distomesial spine reaching end of third segmenl; distomesial spine on second segment distinctly exceeding antennal peduncle. Extensor border of merus of third maxilliped unarmed. Fixed finger of cheliped wilh a row of spines along laleral margin: movable finger with 2 spines on proximal half of mesial margin, and one distal spine. Dactylus of walking legs $2 / 3$ propodus length, with movable spinules along entire ventral margin.

Colour. - Ground colour of carapace and ahdominal segmenls orange. Rostrum and supraocular spines orange. Red band along branchial and posterior borders of carapace. Second to fourth abdominal segments with median and lateral red spots. Chelipeds orange. distal part of fingers white. Walking legs with transverse orange and white bands.

Fig. 42. - Munida psylla sp. nov., ov. 95.3 mm , holotype from $\operatorname{Stn} 67$ (BiocAl) : a, carapace, dorsal view; b, sternal plastron; c_{1} ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; \mathbf{e}, right cheliped, dorsal view; f, right first walking leg, lateral view; \mathbf{g}, dactylus of right first walking
leg, lateral view.

REMARKS. - M. pseliophora is closely related to M. leagora sp. nov. from New Calcdonia, Loyalty tstands and Chesterfield istands, however, they can be differentiated by several characters :

- The intestinal region has one scale in M. leagora, absent in M. pseliophora.
- The cye in M. leagora is large, the maximum corncal diameter is about $1 / 2$ the length of the anterior border of the carapace between the bases of the external orbital spines, whercas is about $t / 3$ in M. pseliophora.
—The colour pattern is different in both species (see Figs 76 and 94).
SIzE. - The males examined ranged between 8.3 and 9.4 mm , females between 3.2 and 9.6 mm ; ovigerous females from 4.6 mm .

DISTRIBUTION. - Loyalty Islands and Chesterfield Islands, between 283 and 300 m .

Munida psylla sp. nov.

Fig. 42
Material examined. - New Caledonia. Blocal. : $\operatorname{stn} 67,500-510 \mathrm{~m}: 1 \mathrm{ov} .95 .3 \mathrm{~mm}$ (MNHN.Ga 2960).
Chalcal 2 : stn 73. $573 \mathrm{~m}: 1 \delta 3.5 \mathrm{~mm}$ (MNHN Ga 296t).
Loyalty Islands. MUSORSTOM $6: \operatorname{stn} 480,380 \mathrm{~m}: 1 \delta 3.0 \mathrm{~mm}$ (USNM).
TYPES. - One ovigerous female ol 5.3 mm from Biocal, Stn 67 (MNHN-Ga 2960) has been selected as holotype; the other specimens are paratypes.

Etymology.- From the Greek, psylla, flea, in reference to the smatl size of the species. The name is considered as a substantive in apposition.

DESCRIPTION. - Carapace with few secondary striac. Intestinal region without scales. External orbitat spine well developed situated, at anterolateral angte of carapace. Branchial margin with $3-4$ spines quite similar in size. Fourth thoracic sternite with several short arcuate striac; lateral surfaces of sixit and seventh thoracic sternites with distinct carinae. Sccond abdominal segment unarmed. Second and third abdominal segments each with one transverse stria. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corncal diameter about $1 / 3$ tength of anterior border of carapace belween bases of external orbial spines. Basal segment of antennule (distal spines excluded) distinctly exceeding cornea, distomesial spine distinctly shorter than distolateral. First segment of antennal peduncle with distomesial spine reaching end of second segmeni; distomesial spine on second segment exceeding antennal peduncle. Extensor border of merus of third maxilliped unarmed. Movable finger of cheliped with basal and distal spines; fixed finger with two distal spines. Dactytus of walking legs $3 / 4$ propodus length, with movable spinules along entire ventral margin.

Remarks. - M. psylla is ctosely related to M. sentai Baba, 1986, from Andaman Sea. However, after the description and illustrations provided by BABA (1986b), they are casily differentiable by the presence of small spines on the hepatic region in M. sentai, absent in the new species. Furbermore. M. sentai has numerous secondary striae on the carapace, absent in the new species. On the other hand. M. sentai has two subequal distal spines on the basal antennular segment, whereas in M. psylla the distolateral spine is distinctly longer than the distolateral.

Distribution. - New Caledonia and Chesterfield Islands, between 380 and 573 m .

Munida rhodonia sp. nov.

Figs 13a, 43, 81
MATERIAL EXAMINED. - New Caledonia. MuSorstom $4: \sin 198,590 \mathrm{~m}: 25$ 末 9.7 to $12.3 \mathrm{~mm} ; 13 \mathrm{ov}$. क 9.5 to $12.9 \mathrm{~mm} ; 2 \% 9.2$ and $13.4 \mathrm{~mm}(\mathrm{MNHN}$ Ga 2963, 2964). - $\operatorname{Sin} 202,580 \mathrm{~m}: 1 \delta 13.8 \mathrm{~mm} ; 4 \mathrm{ov} .98 .7 \mathrm{to} 10.2 \mathrm{~mm}$;

6 \% 6.3 to 10.2 mm (USNM). - $\operatorname{Stn} 238,500-510 \mathrm{~m}: 1$ of $6.3 \mathrm{~mm} ; 1$ i 6.5 mm ; 1 juv. 3.8 mm (MNHN-Ga 2966). $\operatorname{Stn} 240,475-500 \mathrm{~m}:$ I $\delta 12.0 \mathrm{~mm}$ (MNHN-Ga 2967).

Loyatty Istands. Musorstom $6: \sin 466,540 \mathrm{~m}: 1 \delta 13.8 \mathrm{~mm}$ (MNHN-Ga 2969). - Stn 470, $560 \mathrm{~m}: 1$ of $13.3 \min$ (MNHN-Ga 32t3).

Chesterfield Istands. CORAll $2: \operatorname{stn} 13: 700-705 \mathrm{~m}: 1 \mathrm{ov} .910 .7 \mathrm{~mm}$ (MNHN-Ga 2968).
Types. - The male of 11.5 mm from Musorstom 4, Stn 198 (MNHN-Ga 2963) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Greek, rhodon, rose, in reference to the colour of the species. The name is considered as a substantive in apposition.

Description. - Carapace wilh numerous secondary striae. Intestinal region with scales. External orbital spine well developed, situated at anterolaleral angle of carapace. Branchial margin with 5 spines. Fourth thoracic stemite with few short arcuate striae; filth lo seventh slernites smooth. Second abdominal tergite wilh a row of 4-5 pairs of spines on anterior ridge. Second to fourth segmenis each with numerous transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace between hases of externat orbital spines. Basal scgment of antennule (disial spines excluded) reaching end of cornea, with 2 subequal distal spines. First segment of antennal peduncle with distomesial spine not reaching end of second segment; distomesial spine on second segment reaching end of antennal peduncle. Extensor border of merus of third maxilliped unarmed. Palm of cheliped as long as fingers; movable finger unarmed; fixed finger with one distal spine, near tip. Dactylus of walking legs $3 / 4$ lenglh of propodus, with movable spinules along entirc ventral margin.

Colour. - Ground colour of carapace and abdominal segments pinkish. Rostrum and supraocular spines reddish. Chelipeds and walking legs pinkish. Fingers of chelipeds and dactylus of walking legs whitish.

Remarks. - M. rhodonia is closely related to M. rosula sp. nov. from New Caledonia, Loyalty Islands and Chesterlield Istands (see the dilferences under the Remarks of the latter).

Murida rhodonia is the species figured on the cover of this volume.
SIZE. - The males examined ranged between 6.3 and 13.8 mm , females between 6.3 and 13.4 mm : ovigerous females from 8.7 mm .

Distribution. - New Caledonia, Loyalty 1slands and Chesterfietd 1slands. between 475 and 705 m.

Munida rogeri sp. nov.

Fig. 44
MATERTAL EXAMINED. - New Catedonia. BIOCAL : $\operatorname{stn} 65,245.275 \mathrm{~m}: 1$ ov. 96.7 mm (MNHN.Ga 2970).
Clialcal 2 : stn I8, $274 \mathrm{~m}: 1$ § 4.3 mm (MNHN Ga 2973).
Loyalty Islands. MuSORSTOM 6: $\operatorname{stn} 455.260 \mathrm{~m}: 1 \quad \delta 6.5 \mathrm{~mm}$ (USNM). $-\operatorname{Stn} 474.260 \mathrm{ml}: 1 \delta 5.2 \mathrm{~mm}$; 1 ov. $¢ 4.0 \mathrm{~mm}$ (MNHN-Ga 2972).

ChesIerfield Istands. Musorstom $5: \operatorname{stn} 276,258-269 \mathrm{~m}: 1 \% 6.8 \mathrm{~mm}$ (MNHN-Ga 2974). - Stn 280, 270 m : 1 o 5.0 mm (MNHN-Ga 2975). - Stn 287. 265-270 m:5 \% 6.0 to 8.2 mm (MNHN-Ga 2976, 2977). - $\operatorname{Stn} 288$, $270 \mathrm{~m}: 3$ ㅇ 5.4 to 8.3 mm (MNHN-Ga 2978). - Stn 289, $273 \mathrm{~m}: 2 \mathrm{ov} .96 .5$ and 6.7 mm (MNHN-Ga 2979, 3490). $\operatorname{Sin} 291,300 \mathrm{~m}: 1$ ठ 8.4 mmm (USNM). - $\operatorname{Sin} 299,360.390 \mathrm{~m}: 1$ ठ 4.7 mm (MNHN-Ga 2981). - $\operatorname{Sin} 345,305-310 \mathrm{~m}$: $2 \delta 8.0$ and 8.2 mm (MNHN-Ga 2982). - Stı 368, $305 \mathrm{~m}: 1 \% 4.7 \mathrm{~mm}$ (MNHN-Ga 2983).

TYpes. - One male of 7.7 mm from Musorstom 5, Sln 287 (MNHN-Ga 2976) has heen sclecled as holotype; the other specimens are paralypes.

Etymology. - This specics is dedicaied to Roger Villanueva of the Instituto de Ciencias del Mar. Barcelona, for his support in my work and his importanI contribution to the taxonomy of cephalopods.

Fig. 43. - Munida rhodonia sp. nov., $\delta 11.5 \mathrm{~mm}$, holotype from Stı 198 (Musors'rom 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antemnlar and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Ftg. 44. - Munida rogeri sp. nov.. $\delta 7.7 \mathrm{~mm}$, holotype from Str 287 (Musorstom 5) : a, carapace, dorsal view: b, sternal plastron; c. ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped. dorsal view; f, right first walking leg, lateral view; g. dactylus of right first walking leg, lateral view.

DESCRIPTION. - Carapace with secondary striae nearly absent. Intestinal region without scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Thoracic sternites smooth; lateral parts of sixilh and seventh sternites with numerous smatl granules. Second abdominal segment with a row of 4 pairs of spines on anterior ridge. Second and third abdominat segmenis each with one transverse continuous stria, fourth and fifth segments without striae. Males with 1 wo pairs of gonopods on first and second abdominal segments. Eye small, maximum corneal diameter about $1 / 4$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) distinctly exceeding connea, distolateral spine slightly longer than distomesial, occasionally subequal. First segment of antennal peduncte with distomesial spine exceeding second segment; distomesial spine on second segment exceeding third segment. Extensor margin of merus of third maxilliped unarmed. Fixed finger of cheliped with a row of dorsolateral spines, some spines scatered on ventral side; movable finger with a row of spines along mesial border. Dactylus of walking legs half as long as propodus, with movabte spinules along entire ventral margin.

REMARKS, - M. rogeri is closely related to M. pasithea Macpherson \& de Saint Laurent, 1991, from the French Polynesia (Macpiierson \& de Saint Laurent, 1991), but they are casily differentiable by the size of the cornea. The eye is small in M. rogeri being abouI $1 / 4$ the length of the anterior border of the carapace between the external orbital spines, in M. pasithea this ratio is $1 / 3$.

Size. - The males examined ranged between 4.3 and 8.4 mm , females between 4.0 and 8.3 mm ; ovigerous females from 4.0 mm .

DISTRIBUTION. - New Catedonia, Loyalty lslands and Chesterfield Islands, between 245 and 390 m .

Munida rosula sp. nov.

Figs 45, 82
MATERIAL EXAMINED. - New Catedonia. Blocal. : $\sin 32,825 \mathrm{~m}: \mathrm{t} \delta 12.6 \mathrm{~mm}$ (MNHN-Ga 2984). - Sin 33. $675-680 \mathrm{~m}: \mathrm{t}$ of $14.2 \mathrm{~mm} ; 1$ ov. $98.3 \mathrm{~mm} ; 1$ jnv. 3.7 mm (MNHN-Ga 2985). - Stn $75,825-860 \mathrm{~m}: 299.1$ and 10.0 mm (MNHN Ga 3330).

Musorstom $4: \sin 198,590 \mathrm{~m}: 2 \delta 10.0$ and 12.5 mm (USNM).
BIOGEOCAL: $\sin 232,760-790 \mathrm{~m}: 1 \$ 13.0 \mathrm{~mm}$ (USNM). - Stin $292,465.470 \mathrm{~m}: \mathrm{t} \% 5.0 \mathrm{~mm}$ (MNHN-Ga 3329).
"Vauban" : (wilhont position), $800 \mathrm{~m}: \mathrm{t} \delta 11.2 \mathrm{~mm}$ (MNHN-Ga 3328).
Loyalty Islands. Musorstom $6: \sin 438,780 \mathrm{~m}: 14$ o 9.0 to $t 3.4 \mathrm{~mm} ; 2$ ov. \& $16.61017 .8 \mathrm{~mm} ; 6$ of 9.7 10 12.5 mm (MNHN-Ga 2989, 2990).

ChesIerfield Islands. MUSORSTOM $5: \sin 386,755-770 \mathrm{~m}: 1 \$ 6.6 \mathrm{~mm}(\mathrm{MNHN} \cdot \mathrm{Ga} 2991) .-\mathrm{SIn} 387,650$. $660 \mathrm{~m}: 1$ ¢ 9.7 mm (MNHN-Ga 2992).

Corail $2: \operatorname{stn} 13,700-705 \mathrm{~m}: 1$ ㅇ 8.0 mm (MNHN-Ga 2988).
Types. - The male of 11.8 mm from Musorstom 6, Sin 438 (MNHN-Ga 2989) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Latin, rosula, in reference to the pink cotour of the species.
DESCRIPTION. - Carapace with few secondary siriac. Intestinal region withoul scales. External orbial spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic stemite with few short arcuate striac; fifth to seventh sternites smooth. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Second io fourth segments each with 1-2 ransverse striae. Males with 1 wo pairs of gonopods present on first and second abdominal segments. Eye large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea. with 2 subequal distal spines. First segment of antennal peduncle with distomesial spine reaching end of sccond segment; distomesial spine on second segment exceeding third segment. Extensor border of merus of third maxilliped unarmed. Palm of cheliped distinctly shorter than fingers; movable finger unarmed; fixed finger with 2 distal spines, occasionally with one basal spine. Dactylus of walking legs more than $1 / 2$ length of propodus, with movable spinules along enlire ventral margin.

Fig. 45. - Munida rosula sp. nov., ot 11.8 mm , holotype from Stn 438 (Musorstom 6) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral vicw; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right
first walking leg, lateral view.

CoLOUR. - Ground colour of carapace and abdominal segments pink. Rostrum and supraocular spines white. Chelipeds and walking legs pinkish, darker on lerminal half of articles. Fingers of chelipeds and dactyius of walking legs whitish.

REMARKS. - M. rosula is closely related to M. rhodonia sp. nov. from New Caledonia, Loyalty lslands and Chesterfield Islands They are distinguished by :

- The carapace and the abdominal segments have numerous secondary striae in M. rhodonia, these secondary striac are nearly absent in M. rosula.
- The chelipeds is shorter and more massive in M. rhodonia than in M. rosula. In M. rhodonia the palm is as long as the fingers, whereas in M. rosula the palm is dissinctly shorter than the fingers.
- The colour patterns are very different (see Figs. 80 and 81).

StZE. - The males examined ranged between 9.0 and 14.2 mm , females from 6.6 and 17.8 mm ; ovigerous females from 8.3 mm .

DtSTRIBUTION. - New Caledonia, Loyalty Islands and Chesterficld 1slands, between 465 and 860 m .

Munida rufiantennulata Baba, 1969

Figs 46, 83
Munida rufiantennulata Baba, 1969a : 23, fig. 7; 1988: 83 (key), 128; $1989: 131$.
Material examined. - Japan. $06.08 .1967,32^{\circ} 13.6^{\prime} \mathrm{N}, 128^{\circ} 20.2^{\prime} \mathrm{E}, 167 \mathrm{~m}: 1$ q 6.4 mm , holotype; 1 ov. of 5.2 mm , paratype (ZLKU).

Phitippines. MUSORSTOM $2: \operatorname{stn} 36,569-595 \mathrm{~m}: 1 \circ 13.3 \mathrm{~mm} ; 1 \mathrm{ov}$. $911.6 \mathrm{~mm} ;$ t 98.0 mm (USNM). $\operatorname{Sin} 51$, t $70-187 \mathrm{~m}: 1 \mathrm{ov} .96 .5 \mathrm{~mm}$ (MNHN-Ga 2994).

Musorstom $3: \operatorname{stn} 144,379-383 \mathrm{~m}: 4$ © 4.3 to t .6 mm (MNHN-Ga 2995).
New Catedonia. BIocAl : stn $8,435 \mathrm{~m}: \mathrm{t} \delta 6.9 \mathrm{~mm} ; 1 \mathrm{ov} .95 .5 \mathrm{~mm}$ (USNM). - Stn 66, $515 \mathrm{~m}: 2$ ot 5.2 and 6.5 mm (MNHN-Ga 3332). - $\operatorname{Stn} 82,440-460 \mathrm{~m}: 1$ © $9.0 \mathrm{~mm} ; 1 \mathrm{ov} .96 .5 \mathrm{~mm}$ (MNHN-Ga 3333). - Sin 83, 460 m : 1 of 6.0 mm (MNHN-Ga 2649).

MUSORSTOM $4: \operatorname{stn} 236,495-550 \mathrm{~m}: 1 \circ 6.7 \mathrm{~mm}$ (MNHN-Ga 2997). - Sts $238,500-510 \mathrm{~m}: \mathrm{t}$ \& $8.0 \mathrm{~mm} ; 1 \mathrm{ov}$. of 6.8 mm (MNHN-Ga 2998).

Smib 3 : stn 2t, $525 \mathrm{~m}: 1$ of t 0.6 mm (MNHN-Ga 2999).
Smb 4 : stn $36,530 \mathrm{~m}: \mathrm{t}$ © 5.2 mm (MNHN-Ga 3331).
Loyatty Istands. MUSORSTOM $6: \operatorname{stn} 391,390 \mathrm{~m}: 1 \mathrm{ov}, 97.3 \mathrm{~mm}$ (MNHN-Ga 3000).
Matthew and Hunter Islands. Volsmar $: \sin 6,480 \mathrm{~m}: 1 \mathrm{ov} .97 .8 \mathrm{~mm}$ (USNM). - $\mathrm{Stn} 50.425 \mathrm{~m}: \mathrm{t}$ ठ $3.6 \mathrm{~mm} ; 1 \mathrm{ov}$. +5.6 mm (MNHN-Ga 3002).

Chesterfietd Islands. Musorstom 5 : stn $300,450 \mathrm{~m}: 1$ ㅇ 5.6 mm (MNHN-Ga 3003). - Sin 301, 480-610 m : 2 ot 5.0 and 9.0 mm (MNHN-Ga 3004).

Remarks. - The specimens collected off the Philippines, New Caledonia and adjacent walers agree with the types and the information provided by BABA (1969a, 1988). The lateral surfaces of the sixth and seventh thoracic sternites lave distinct crests. The inclination of the frontal margin and the length of the first external orbital spine show certain varialions with the specimen size. The type specimens and the specimens smaller than 8 mm of carapace length have the frontal margins distinctly oblique and the external orbital spine short; the larger specimens have the frontal margins more transverse, although oblique, and the external orhital spine well developed. The fixed finger of cheliped has 1 or 2 spines on the proximal half in several specimens, bul these spines are absent in others.

BABA (1969a) provided the colour pattern of the type after one week in formalin. This pattern agrees quite well with the colour observed in the specimens collected during MusORSTOM 5 cruise (Fig. 83).

SIZE. - The males examined ranged between 3.6 and 13.3 mm , females between 5.2 and 11.6 mm ; ovigerous females from 5.2 mm .

Fig. 46. - Munida rufiantennulata Baba, 1969, $\sigma^{2} 9.0 \mathrm{~mm}$, from $\operatorname{Stn} 301$ (MuSORSTOM 5) : a, carapace, dorsal view; b, sternal plastron; c. ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral vicw; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right lirst walking leg, lateral view.

Distribution. - Japan and Philippines, between 45 and 705 m (BABA, 1988; 1989). The present malerial from the Philippines, New Caledonia, Loyally lslands, Chesterfield 1slands, Matthew and Hunler Islands, was collecled belween 379 and 610 m .

Munida runcinata sp. nov.

Fig. 47
Material examined. - New Caledonia. Musorstom 4 : stn 192, $320 \mathrm{~m}: 2 \mathrm{ov}$. 88.1 and 10.0 mm (MNHN-Ga 3335). - $\operatorname{Stn} 195,470 \mathrm{~m}: 8$ ot 4.8 to $11.1 \mathrm{~mm} ; 6$ ov. $\% 7.2$ to $10.0 \mathrm{~mm} ; 4$ ¢ 5.3 to 7.5 mm (MNHN-Ga 3336). - Stn $248,380-385 \mathrm{~m}: 1$ す 7.8 mm (MNHN-Ga 3337).

Loyalty Islands. Musorstom $6: \operatorname{stn} 391,390 \mathrm{~m}: 1 \% 5.0 \mathrm{~mm}$ (USNM). — Sin 464, $430 \mathrm{~m}: 387.0109 .3 \mathrm{~mm}$; 3 ov. 98.0 to $10.3 \mathrm{~mm} ; 297.8$ and 9.0 mm (MNHN.Ga 3006, 3007 and USNM). - Stn 487, $500 \mathrm{~m}: 1 \% 7.4 \mathrm{~mm}$ (MNHN-Ga 3334).

Types. - The male of 8.0 mm from Musorstom 6, Sin 464 (MNHN-Ga 3006) has heen selected as hololype; the other specimens are paralypes.

ETYMOI.OGY. - From the Latin, rincinatus, plain, smoolh, in reference to the smoolh carapace surface, only armed with cpigastric spines.

DESCRIPTION. - Carapace with secondary striae. Inleslinal region withoul scales. Dorsal surface of carapace only with a row of epigasiric spines. External orbital spine long, silualed at anterolateral angle of carapace. Branchial margin wilh 5 spines. Fourlh thoracic slernite wilh few short arcuale striac; fifih 10 seventh smooth. Second abdominal segmenl unarmed. Second to fifih segments each wilh several transverse continuous striae. Males wilh two pairs of gonopods on firsi and second abdominal segments. Eye large, maximum comeal diameter aboul $1 / 2$ length of anterior horder ol carapace belween bases of external orbilal spines. Basal segment of anlennule (distal spines excluded) reaching end of cornea, with 2 subequal dislal spines. Firsl segment of antennal peduncle with long distomesial spine reaching end of third segment: disfomesial spine on second segment dislinctly exceeding anlennal peduncle. Extensor border of merus of third maxilliped wilh dislal spine. Movable finger ol cheliped with one basal and one terminal spine; fixed finger with 2 terminal spincs. Daclylus of walking legs $2 / 3$ propodus length, with movable spinutes along veniral margin, dislal lhird unarmed.

REMARKS. - M. runcinata is closely related to M. spilota sp. nov. from New Caledonia and Malthew and Hunler lslands and M. sao sp. nov. from New Caledonia (hul see below for addiional differences under the Remarks of Ihese species).

SIzE. - The males examined ranged belween 4.8 and 11.1 mm , females between 5.0 and 10.3 nm ; ovigerous females from 7.2 mm .

Distribution. - New Caledonia and Loyalty 1slands, between 320 and 500 m .

Munida sabatesae sp. nov.

Fig. 48
MATERIAL EXAMINED. - New Caledonia. MUSORSTOM $4: \sin 155,500-570 \mathrm{~m}: 12$ of 13.3 to $20.0 \mathrm{~mm} ; 5 \mathrm{ov}$. $\%$ 16.4 to $18.4 \mathrm{~mm} ; 6$ 오 4.9 to 20.0 mm (MNHN.Ga 3008). - $\operatorname{Stn} 162,535 \mathrm{~m}: 3 \delta 8.71019 .5 \mathrm{~mm} ; 1 \% 12.5 \mathrm{~mm}$ (MNHN-Ga 3009). - Sin 167, $575 \mathrm{~m}: \mathrm{l}$ o 17.3 mm (MNHN-Ga 3010). - Sth 180, $450 \mathrm{~m}: 1$ of 15.0 mm ; 1 juv. 4.0 mm (MNHN Ga 3011). - Stn 193, $415 \mathrm{~m}: 3 \delta 13.7$ to $16.0 \mathrm{~mm} ; 2$ ov. 814.3 to 16.4 mm (MNHN-Ga 3012). - Sin 194. $5.50 \mathrm{mn}: 41$ ठ 10.8 to $21.6 \mathrm{~mm} ; 25 \mathrm{ov}$. $\$ 13.9$ to $18.9 \mathrm{~mm} ; 46$ \& 8.5 to 19.8 min (MNHN-Ga 3013 and USNM). Stn 195. $470 \mathrm{~m}: 5$ o 10.7 to $20.4 \mathrm{~min} ; 3$ ov. $\& 15.0$ 10 $15.7 \mathrm{~mm} ; 4$ \& 10.0 to 13.1 mm (USNM). - Stn 196.460 m : 1 ठ $12.5 \mathrm{~mm} ; 2 \mathrm{ov}$. 오 14.8 and $15.3 \mathrm{~mm} ; 1$ ㅇ 9.0 mm (MNHN.Ga 3015).

Cilalcal $2: \operatorname{stn} 2,500-610 \mathrm{~m}: 189.4 \mathrm{~mm}$ (MNHN-Ga 3017).
SM1B $6: \operatorname{stn} 124,360.405 \mathrm{~m}: 1$ \& $14.6 \mathrm{~mm} ; 1 \mathrm{ov}$. $¢ 16.6 \mathrm{~mm} ; 1917.0 \mathrm{~mm}$ (MNHN-Ga 3018).
New Hebrides 1slands. $01.08 .1978,350 \mathrm{~m}: 1$ ov. 919.8 mm (MNHN-Ga 3019).

Fig. 47. - Munida runcinata sp, nov., $\delta 8.0 \mathrm{~mm}$, holotype from $\operatorname{Stn} 464$ (MUSORSTOM 6) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; \mathbf{g}, dactylus of right
first walking leg, lateral view.

Fig. 48. - Munida sabatesae sp. nov., ${ }^{\star} 17.3 \mathrm{~mm}$, holotype from Stn 167 (Musorstom 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 49. - Munida sao sp. nov.. ov. $\$ 7.8 \mathrm{~mm}$, holotype from $\operatorname{Sin} 538$ (Lagon) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antenal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, left first walking leg, lateral view; g, dactylus of left first walking leg, lateral view.

Types. - One mate of 17.3 mm from Musorstom 4, Stn 167 (MNHN-Ga 3010) has been selected as holotype; the other specimens are paratypes.

Etymology. - This species is dedicated to A. Sabates of the Instituto de Ciencias del Mar, Barcelona, for her support in my research work.

DESCRIPTION. - Carapace with secondary striae between principal striae. Gastric region with 2 epigastric spines behind supraocular spines. Two other spines on each branchiocardiac boundary, anterior one well developed, postcervical, posterior one small, near lateral extremity of cardiac transverse clevation, occasionally one additional small cardiac spine near second branchicardiac spine. Posterior ridge unarmed. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Thoracic sternites with numerous arcuate striac. Second and third abdominal segments cach with 4 equal-sized spines on anterior transverse ridge; anterior ridge of fourth segment with 2 spines. Males with gonopods absent from first abdominal segment. Eye moderately large, maximum corncal diameter $1 / 3$ leng1h of anterior border of carapace between bases of external orbital spines. Basal antenular segment (distat spines excluded) slightly exceeding cornea, distomesial spine longer than distolateral. First antennal segment moderately produced on mesial margin, reaching end of second segment; distomesial spine on second segmenl exceeding peduncle; third segment with well developed dislomesial spine exceeding antennal pedunclc. Merus of third maxilliped bearing median spine on flexor border and distomarginal spine on extensor margin. Tips of fixed linger of cheliped bifid. Dactylus of walking legs about $1 / 2$ 1/3propodus lengih, with spinules along ventrat border.

REMARKs. - M. sabatesae is closely related to M. sphecia sp. nov. from New Caledonia, Loyalty Islands and Chesterfield lstands (see Renlarks under M. sphecia).

SILE. - The males examined ranged between 8.7 and 21.6 mm , fenales between 4.9 and 20.0 mm ; ovigerous females from 13.9 mm .

Distribu'tion. - New Caledonia and New Hebrides, between 350 and 610 m .

Munida sao sp. nov.

Fig. 49
MATER1AL EXAMINED. - New Caledonia. Lagon : stn $537.200 \mathrm{~m}: 4 \sigma 6.4107 .5 \mathrm{~mm} ; 4$ ov. 86.7 to 7.5 mmm ; 4 \& 6.0 to 6.4 mm (MNHN-Gm 3020. 3402). - Stn 538, $195 \mathrm{~m}: 6$ ot 6.4 to $8.8 \mathrm{~mm} ; 2$ ov. 87.8 and $8.6 \mathrm{~mm} ; 3 \% 6.4$ to 8.7 mm (MNHN-Ga 3021, 3022). - Stn $539,240 \mathrm{~m}: 1 \delta 8.3 \mathrm{~mm} ; 1$ ov. 97.5 mm (MNHN-Ga 3338). - Sin 1146 , $185 \mathrm{~m}: 185.0 \mathrm{~mm}$ (MNHN.Ga 3339). - Stn $1147,210 \mathrm{~m}: 3 \mathrm{ov} .96 .7$ to $8.4 \mathrm{~mm} ; 294.5$ and 7.0 min (MNHN.Ga 3340). - Sin $1148,220 \mathrm{~m}: 2 \mathrm{ov} .86 .3$ and $7.0 \mathrm{~mm} ; 1 \% 4.8 \mathrm{~mm}$ (MNHN Ga 3341).

Btocal: sti l10, $275 \mathrm{ml}: 1$ ס 7.8 mm (MNHN-Ga 3023).
MUSORSTOM $4: \operatorname{stn} 149,165 \mathrm{~m}: 7 \delta 5.2$ to $8.2 \mathrm{~mm} ; 188.2 \mathrm{~mm}$ (MNHN-Ga 3342). -Stn 151, $200 \mathrm{~m}: 8$ of 6.0 to $7.5 \mathrm{~mm} ; 2$ ov. 96.5 and $6.7 \mathrm{~mm} ; 784.0$ to 7.8 mm (MNHN.Ga 3024). $-\operatorname{Stn} 152,223 \mathrm{~m}: 4$ \& 4.6 10 $7.9 \mathrm{~mm} ; 1 \mathrm{ov}$. . $8.5 \mathrm{~mm} ; 2$ ¢ 5.1 and 7.2 mm (MNHN-Ga 3025). - Stn $184,260 \mathrm{~m}: 1 \delta 7.0 \mathrm{~mm} ; 2$ ov. 97.5 and 8.6 mm (MNHN. Ga 3343). - Stn 186, $205 \mathrm{~m}: 5$ ot 7.4 10 $9.0 \mathrm{~mm} ; 4$ ov. 97.2 10 $9.1 \mathrm{~mm} ; 295.6$ and 8.2 mm (MNHN-Ga 3026). - Sin $189,215 \mathrm{~m}: 5$ \& 7.8 to 9.8 mm ; 2 ov. 97.3 and 8.2 mm (MNHN. Ga 3344).

SMB 6: sin 106. 165-195 m:] o 7.5 mm ; 1 ov. $\% 8.9 \mathrm{~mm}$ (MNHN-Ga 3027). - $\operatorname{Stn} 107,195-205 \mathrm{~m}: 108.6 \mathrm{~mm}$ (MNHN-Ga 3028). - Sm 108, 2t0-220 m: 1 ov. 98.1 mm (MNHN-Ga 3029). - Sth 110, 225.230m: 1 ov. 99.2 mm (MNHN.Ga 3030), - Stn 112. 220.225 m: 1 ov. $98.3 \mathrm{~min}(M N H N-G a 3031),-\operatorname{Stn} 127,190-205 \mathrm{~m}: 4$ ov. of 7.3 to 8.9 mm (MNHN-Ga 3032). - Stil 128. 205-215 m: 289.2 and $9.6 \mathrm{~mm} ; 2$ ov, 88.8 and $8.9 \mathrm{~mm} ; 188.0 \mathrm{~mm}$ (MNHNGa 303.3).

TYPES. - The ovigerous female of 7.8 mm from LAGON, Sll 538 (MNHN-Ga 3021) has been selected as holotype; the other specimens are paratypes.

ETYMOLOGY. - The name refers to one of the Nereids of the Greck mylhology (Sao).
DESCRIPTION. - Carapace with secondary striac. Intestinal region without scales. External orbital spine long. sithated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth to sixth thoracic sternites with
some short arcuate striae. Second abdominal segment unarmed. Second to filth segments each with several transverse continuous striac. Males with two pairs of gonopods on first and second abdominal segments. Eye large, maximum corneal diameter about $2 / 5$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (dislat spines excluded) nearly reaching end of comea, with 2 subequal distal spines. First segment of antennal peduncle with long distomesial spine reaching end of third segment; dislomesial spine on second segment exceeding antennal peduncle. Extensor margin of merus of third maxilliped with small distal spine. Movable and fixed fingers of cheliped with a row of spines along mesial and lateral borders respectively. Dactylus of walking legs $2 / 3$ propodus length, with spinules along ventral margin, distal ihird unarmed.

Remarks. - M. sao is closely related to M. spilota sp. nov. from New Caledonia and Mathew and Hunter 1slands, but they differ in several aspects (see Remarks under that species).
M. sao is also close to M. runcinata sp. nov. from New Caledonia and Loyalty 1slands. They differ in the following aspects :

- The dorsal surface of the carapace bears only a row of epigastric spines in M. runcinata, whereas in M. sao there are also parahepatic, anterior branchial and posicervical spines.
- The thoracic sternites bear more striae in M. sao than in M. runcinata.
- The movable and fixed fingers of the cheliped bear a row of spines along mesial and lateral borders in M. sao, whereas in M. runcinaia the movable finger of the cheliped bears one basal and one subterminal spine and the fixed finger only bears 2 subterminal spines.

SIZE. - The males examined ranged between 4.6 and 9.8 mm , females between 4.0 and 9.2 mm ; ovigerous fenales from 6.3 mm .

Distribution. - New Caledonia, between 165 and 260 m .

Munida semoni Ortmann, 1894

Munida semoni - Macplierson \& BabA, 1993 : 386 (key), 411, fig. 17 (references).
Matertal fxamined. - New Catedonia. Biocal: stn $108,335 \mathrm{~m}: 2 \delta 8.6$ and $10.0 \mathrm{~mm} ; 2 \mathrm{ov}$. 97.6 and $8.7 \mathrm{~mm} ; 1$ ㅇ 8.6 mm (MNHN-Ga 3034).

Remarks. - This species is only known by one male (5.5 mm) collected in Ambon, Indonesia (see Macpierson \& baba, 1993). The specimens caught in New Caledonia agree quile well with the lectotype of M. semoni. Morcover, the movable and fixed fingers of the chelipeds have one row of spines along the mesial and lateral borders, respectively. The chelipeds are lost in the tectotype. although the illustration of ORTMANN (1894) shows the movable finger unamed. In spite of this difference, the specimens from New Caledonia are identified as M. semoni. The discovery of topotypic specimens would be desirable in order to clarify the true identity of the present material, because the presence or absence of a row of spines on the fingers of the chelipeds is considered to be of specific importance in the species of the genus Munida.

The depth of the type localily is unrecorded. The present material was caught at 335 m .

Munida soelae Baba, 1986

Munida soelae Baba, 1986 a : 2. fig. 3; 1988 : 82 (key).
Munida sp. - BABA, 1986c : 175, 292, fig. 126.
Matertal examined. - New Caledonia. Chalcal, $2: \sin 74,650 \mathrm{~m}: 2 \% 5.3$ and 5.9 mm (MNHN-Ga 3035). $-\operatorname{Sin} 75,600 \mathrm{~m}: \mathrm{t}$ ठ $6.6 \mathrm{~mm} ; 196.1 \mathrm{~mm}$ (MNHN-Ga 3036).

SAJB $3: \sin 2,530 \mathrm{~m}: 1 \% 8.4 \mathrm{~mm}$ (MNHN Ga 3037).
REmarks. - The specimens from New Caledonia agree with the descriplion and figures provided by BABA ($1986 \mathrm{a}, \mathrm{c}$). However, the number of spines on the posterior border of the carapace and on the branchiocardiac area
presents a cerlain degree of variation : 4-6 and 2-4 respectively in the New Caledonian specimens, whereas the types have 6 and 2 respectively.

Distribution. - Norlh-Wesi Australia and New Caledonia, belween 450 and 600 m .

Munida sphecia sp. nov.

Figs 50, 95
Material examined. - New Caledonia. "Vauban" : stn D 4, $400 \mathrm{~m}: 1$ \% 9.3 mm (MNHN-Ga 3044). - Stn CB $105,360 \mathrm{~m}: 4$ o 10.4 to $13.2 \mathrm{~mm} ; 1 \mathrm{ov}$. $\& 12.4 \mathrm{~mm} ; 3$ \& 12.6 to 15.2 mm (MNHN-Ga 3043). - Stn withoul n°, 13.04.1978, île des Pins, $400 \mathrm{~m}: 1$ § $14.4 \mathrm{~mm} ; 2$ ov. 914.2 and 15.0 mm (MNHN-Ga 3041, 3042).

Biocal: $\operatorname{stn} 38,360 \mathrm{~m}: 199.0 \mathrm{~mm}$ (MNHN-Ga 3045). - Stn 45, 430-465 m:1 615.6 mm (MNHN.Ga 3046).
Musorstom $4: \operatorname{stn} 148,59 \mathrm{~m}: 1$ के to. 6 mm (MNHN-Ga 3047). - Stn $193,430 \mathrm{~m}: 5$ कt 10.4 to $15.7 \mathrm{~mm} ; 11 \mathrm{ov}$. . 10.4 to $13.9 \mathrm{~mm} ; 2$ \& 9.5 and 10.4 mm (MNHN-Ga 3048). - Stn 212, $375-380 \mathrm{~m}: 296.7$ and 13.6 mm (MNHN-Ga 3049). - Sth $213,405-430 \mathrm{~m}: 5 \delta 10.61018 .4 \mathrm{~mm} ; 3 \mathrm{ov}$. $\% 11.1$ to $14.6 \mathrm{~mm} ; 699.71015 .6 \mathrm{mmm}$ (MNHN-Ga 3050 , 3051). - $\operatorname{Stn} 214,425-440 \mathrm{~m}: 4 \delta 10.0$ to $18.1 \mathrm{~mm} ; 6 \mathrm{ov}$. 811.4 to $17.1 \mathrm{~mm} ; 2 \% 9.4$ and 10.0 mm (MNHN-Ga 3052). - Sm 215, $485.520 \mathrm{~m}: 1$ क $11.9 \mathrm{~mm} ; 2$ \& 10.5 and 11.0 mm (MNHN-Ga 3053). - Stn 222, $410-440 \mathrm{~m}: 3$ 末 11.8 to $14.7 \mathrm{~mm}: 2$ ov. 99.3 and 10.0 mm (MNHN-Ga 3345). - Stn 226, $390 \mathrm{~m}: 1$ juv. 5.0 nmm (MNHN-Ga 3346).

SmIB $1: \operatorname{stn} 2,415 \mathrm{~m}: 2 \delta 11.7$ and 12.0 mm (MNHN.Ga-3038). $-\operatorname{Stn} 9,450 \mathrm{~m}: 1$ © $13.6 \mathrm{~mm} ; 1 \mathrm{ov} .914 .7 \mathrm{~mm}$; 2 of 16.8 and 16.9 mm (MNHN Ga 3039). - $\operatorname{Sin} 10,395-410 \mathrm{~m}: 1$ ov. $\& 14.2 \mathrm{~mm} ; 1911.6 \mathrm{~mm}$ (MNHN Ga 3040).

Chalcal 2 : $\operatorname{stn} 82,304 \mathrm{~m}: 1$ © 15.0 mm (MNHN-Ga 3396).
Smib $2: \operatorname{stn} 3,428 \mathrm{ma}: 2$ o 11.1 and $14.5 \mathrm{~mm} ; 3 \mathrm{ov} .913 .21013 .7 \mathrm{~mm} ; 399.0$ to 15.3 mm (USNM). - Stn 5 , $398-410 \mathrm{~m}: 1$ of $15.3 \mathrm{~mm} ; 1814.7 \mathrm{~mm}$ (MNHN-Ga 3055), - Stn 6, 442-460 m:5 59.4 to $17.0 \mathrm{~mm} ; 1 \mathrm{ov} .9$ $11.0 \mathrm{~mm} ; 2$ \& 8.2 and 12.0 mm (USNM). - Stn 9, $475-500 \mathrm{~m}: 1 \% 12.8 \mathrm{~mm} ; 1 \mathrm{ov} .916 .7 \mathrm{~mm}$ (MNHN-Ga 3057).

Smib $4: \operatorname{stn} 36,530 \mathrm{~m}: 1$ ㅇ 6.0 mm (MNHN-Ga 3397). - Stn 66, $430 \mathrm{~m}: 1$ of 13.5 mm (MNHN-Ga 3062). Stn 68, $430 \cdot 440 \mathrm{~m}: 1$ ot 13.4 mm (MNHN-Ga 3063).

Smib 5 : Banc Alis, $13,09.1985,250 \mathrm{~m}: 1$ of 5.0 mm (MNHN.Ga 3064). $-\operatorname{Sin} 86,320 \mathrm{~m}: 1 \mathrm{ov}$. 오 12.3 mm (MNHN-Ga 3065). - Stn 88, $350 \mathrm{~m}: 1 \delta 17.0 \mathrm{~mm}$ (MNHN-Ga 3066). - Stn 97, $300 \mathrm{~m}: 2 \% 8.6$ and 13.2 mm ; 1 ov . 9 13.2 mm (MNHN-Ga 3067).-Stn 104, 305-335 $\mathrm{m}: 2$ © 5.7 and 7.0 mm (MNHN-Ga 3347).

ATTEQUE: $\operatorname{stn} 11,340-360 \mathrm{~m}: 1$ ov. $\& 12.3 \mathrm{~mm}$ (MNHN-Ga 3068).
Loyalty Islands. MuSORSTOM $6: \operatorname{stn} 406,373 \mathrm{~m}: 3$ of 10.8 to $15.6 \mathrm{~mm} ; 1$ ov. 811.8 mm (MNHN-Ga 3058). $\operatorname{Sin} 460,420 \mathrm{~m}: 1$ ot $15.6 \mathrm{~mm} ; 1815.2 \mathrm{~mm}$ (MNHN.Ga 3059). - $\operatorname{Stn} 464,430 \mathrm{~m}: 2$ ot 12.2 and 13.0 mm (MNHN-Ga 3060). - $\operatorname{Stn} 472,300 \mathrm{~m}: 1 \mathrm{ov}$. 913.7 mm (MNHN-Ga 3061).

Chesterfield Islands. ChaLCAL $1: \sin 8.348 \mathrm{ml}: 2 \% 11.4$ and $11.6 \mathrm{~mm} ; 3 \mathrm{ov} .811 .0$ to 12.8 mm (MNHN-Ga 3069).

MUSORSTOM $5: \operatorname{stn} 299,360.390 \mathrm{~m}: 1$ of 24.0 mm (MNHN.Ga 3394). $-\operatorname{Stn} 300.450 \mathrm{~m}: 1$ of $15.2 \mathrm{~mm} ; 3$ of 9.010 10.1 mm (MNHN-Ga 3070). - Stn 306, 375-415 m: 196.0 mm (MNHN-Ga 3395). - Stn 332, $400 \mathrm{~m}: 2910.8$ and 11.7 mm (MNHN-Ga 3071). - Stn 378, $355 \mathrm{~m}: 199.3 \mathrm{~mm}$ (MNHN-Ga 3072).

Types. - One male of 18.1 mm from Musorstom 4, Sin 213 (MNHN-Ga 3050) has been selecled as holotype; the other specimens are paratypes.

Etymology. - From the Greek, sphex, wasp, in reference to the yellow and purple bands of the carapace,
DESCRIPTION. - Carapace with numerous secondary striae. Gastric region with 2 epigastric spines behind supraoculars. One postcervical spine on each side, occasionally two. Extemal orbial spine well developed, situaled at anlerolaleral angle of carapace. Branchial margin with 3 spines. Thoracic sterniles wilh numerous arcuale striac. Abdominal segments wilh numerous striae. Sccond segment with 6 spines on anterior transverse ridge; lhird segmenl with 4 spines; anlerior ridge of fourth segment with 2 spines; posterior ridge unarmed. Males with gonopods absent from first abdominal segmenl. Eye moderalely large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal antennular segment (distal spines excluded) slighlly exceeding end of cornea, distomesial spine dislinclly longer than dislolateral. First antennal segment moderately produced on inner margin, stighlly exceeding second segmenl; dislomesial spine on second segment exceeding antennal pedunele, one addilional spine on mesial border, located at midlength of segment; hird seginent unarmed. Merus of third maxilliped bearing median spine on flexor margin; small dislomarginal spine on extensor

FIG. 50. - Munida sphecia sp. nov., of 18.1 mm , holotype from $\operatorname{Sin} 213$ (MuSORSTOM 4) : a, carapace, dorsal vicw; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g. dactylus of right first walking leg, lateral view.
border. Mesial border of movable finger of cheliped denticulated: tip of fixed finger bifid. Dactylus of walking legs about $1 / 4$ propodus length, with numerous median spinules on ventral border.

COLOUR. - Carapace with wide transverse yellow and purple bands. Epigastric region and cervical groove with purple hand; cardiac region and taleral parls of branchial regions yellow; center parts of hranchial regions and intestinat region purple. Rostrum and supraocular spines ycllow. Second and third abdominal segments wilh yellow and purple bands. Chelipeds and walking legs with Iransverse whitish and red bands; distal part of fingers of chelipeds whitish. proximal part red; dactylus of walking legs whitish.

Remarks. - M. sphecia is very close to M. tenuipes Baba \& Miyake, 1967, from Japan (Miyake \& BABA, 1967a), bolh species can be distinguisehd by small bul constant differences :

- The anterior margin of the third thoracic sternite is distinctly bilobated in M. sphecia, very weakly in M. tenuipes.
- The dislomesial spine on the basal antennal segment is long, excecding the antennal peduncle in M. tenuipes; this spine is distinctly shorter in M. sphecia, and slightly exceeds the second antennal segment.
- The mesial margin of the second antennal scgment is only armed with one distal spinc in M. tenuipes. M. sphecia has one distomesial and one additional spine on its hase.

The new species is also close to M. sabatesae sp. nov. from New Calcdonia and New Hebrides Islands. They differ in several constant characters :

- The branchial margin in M. sphecia bears 3 spines, 4 in M. sabatesae.
- Usually there is onc poslcervical spine in M. sphecia, 2 spines in M. sabatesae.
- The second abdominal segment has 6 spines on the anterior ridge in M. sphecia, 4 spincs in M. sabatesae.
- The third antennal segment has a well devcloped distomesial spine in M. sabatesae, absent in M. sphecia.
- The propodus of the walking legs are less than 3 times longer than the dactylus in M. sabatesae, being about 4 times in M. sphecia.

SLEE. - The malcs examined ranged between 5.0 and 24.0 mm , females between 6.0 and 17.1 mm ; ovigerous femalcs from 9.3 mm .

DISTRIBUTION. - New Caledonia, Loyally lslands and Chesterfield lslands, between 59 and 520 m .

Munida spilota sp. nov.
Figs 5t, 84
Material examined. - New Catedonia. Musorstom 4 : stn 207, 220-235 m: 1 \% 8.6 mm (USNM). Smb $4: \operatorname{stn} 42,320 \mathrm{~m}: 2 \delta 7.6$ and 7.7 mm (MNHN-Ga 3074, 3511).
Matthew and Hunter Istands. Volsmar : sin $7.400 \mathrm{~m}: \mathrm{t} \delta 6.7 \mathrm{~mm}$ (MNHN-Ga 3075).
Typas. - The male of 6.7 mm from Volsmar, $\operatorname{Sin} 7$ (MNHN-Ga 3075) has bcen sclected as holotype; lhe other specimens are paratypes.

Etymology. - From the Greck, spilos, spot, fleck, in reference to the colour pattern of the specics.
DESCRTPTIOA. - Carapace wilh secondary slriac. Inlestinal region with onc scale. External orbital spine situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic stemite with few short arcuate striae; fifth lo seventh sternites smooth. Sccond abdominal segment with 2 spincs on cach side of anterior ridge. Sccond to fifth segments each with several cransversc conlinuous striac. Males with lwo pairs of gonopods on first and sccond abdominal scgments. Eyc large, maximum corneal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spincs. Basal segment of antennule (distal spines excluded) reaching end of comea, wilh 2 subcqual distal spines. First scgment of antennat peduncte with long distomesial spinc reaching end of third segment; distomesial spine on sccond segment excceding antennal peduncle. Extensor horder
of merus of third maxilliped with distal spine. Movahle finger of cheliped with one basal and one distal spines; fixed finger with a row of spines along lateral border. Dactylus of walking tegs $2 / 3$ propodus length, with movable spinules along entire ventral margin.

COLOUR. - Ground colour of carapace and abdominal segments pinkish. Red longitudinal rows on dorsat surface of carapace, spines red. Rostrum and external orbital spines pinkish. Lateral parts of second to fourth abdominal segments with red spots; median red spot on fourth and fifth abdominal segment. Chelipeds missing in pholographed specimen. Walking legs with transverse whitish and reddish bands; dactylus whitish.

Remarks. - Munida spilota is closely related to M. runcinata sp. nov. from New Caledonia and Loyalty 1slands. They differ in the lollowing aspects:

- The dorsal surface of the carapace is only armed with epigastric spines in M. runcinata, whereas M. spilota also has parahepatic and anterior branchial spines.
- The dactylus of the walking legs are unarmed on the terminal third in M. runcinata, whereas in M. spilota the spinules are along the entire ventral border.
M. spilota is also ctose to M. sao sp. nov. from New Caledonia, but they differ in several features :
- The thoracic sternites are smooth in M. spilota. with numerous striac in M. sao.
- The movabic finger of the chetiped in M. spilota bears on the mesial margin only 2 spines (one basal and one subterminal). instead of a row of spines in M. sao.
- The dactylus of the walking legs has spines along the entire ventral horder in M. spilota, unarmed on the lerminal third in M. sao.

SIZE. - The mates examined ranged between 6.7 and 8.6 mm , no females were caught.
Distribution. - New Caledonia, Mathew and Hunter Islands, between 220 and 400 m .

Munida spinicordata Henderson, 1885

Fig. 52
Munida spinicordata Henderson, $1885: 413 ; 1888: 146$, pt. 15, fig. 3. - BABA, $1988: 83$ (key).
Material. examined. - Fiji Islands. "Challenger" : sin 174d, 03.08.1874, 19 ${ }^{\circ} 05^{\circ} 50^{\prime \prime} \mathrm{S}, 178^{\circ} 16^{\prime} 20^{\prime \prime} \mathrm{E}, 390 \mathrm{~m}$: I 54.0 mm , holoype (BM).

DESCRIPTION.- Carapace with few secondary striae. Gastric region with 2 epigastric spines behind supraoculars. Cardiac region with one strong median spinc. External orbital spine well developed. situated at anterotateral angle of carapace. Branchial margin with 4 spines. Thoracic sternites smooth. Second ahdominal segment with 4 spines on anterior transverse ridge: third segment with 4 spines; anterior ridge of fourth segment with 2 spines; posterior ridge with one median spine. Gonopods absen from first segment. Eye large, maximum corneal diameter about $1 / 2$ tength of anterior border of carapace between bases of external orbital spines. Basal antennular segment (distal spines excluded) reaching end of cornca, distomesial spine shorter than distolateral. First amennal segment produced on inner margin, reaching end of antennal peduncle; distomesial spine on second segment reaching end of third segment; third segment with small distomesial spine. Merus of third maxilliped bearing median spine on flexor margin; distomarginal spine on extensor border. Chelipeds missing. Dactylus of walking legs aboul $1 / 2$ propodus length, without spinules on ventral border.

Remarks. - Only known from the ype specimen. The closest species is M. squanosa Henderson. 1885, from Admiralty lslands, Loyalty lstands and New Caledonia (see below) but they are casity distinguishahle by the absence of spines on the posterior border of the carapace, the thoracic sternites without striac and the long distomesiat spine on the hasal amtennal segment.

Fig. 51. - Munida spilota sp. nov., $\delta 6.7 \mathrm{~mm}$, holotype from Stn 7 (Votsmar) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f. right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

FIG. 52. - Munida spinicordata Henderson, 1885, of 4.0 mnn, holotype from $\operatorname{Stn} 174 d$ ("Challenger") : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right second or third pereiopod, lateral view; f, dactylus of right second or third pereiopod, lateral view.

Munida squamosa Henderson, 1885

Fig. 96
Minida squamosa Henderson, 1885: 409; 1888: 131, pl. 13, fig. 1.- MACPHi:RSon, 1993: 425, fig. 1h-i.
Not Murida squamosa - BaBA, $1988: 83$ (key), 133 (= M. analoga Macpherson. 1993).
MATERIAL EXAMINED. - New Caledonia, "Vauban": sm CB 34, $400 \mathrm{~m}: 1 \mathrm{ov}$. 916.0 mm (MNHN•Ga 3076). — Stn withoul $n^{\circ}, 22^{\circ} 33.2^{\prime} \mathrm{S}, 166^{\circ} 25^{\prime} \mathrm{E}, 290-350 \mathrm{~m}, 06.06 .1979: 1$ ov. 813.5 mm (MNHN Ga 3079).

LaGon : str 493, $500-535 \mathrm{~m}: 1$ juv. 3.5 min (MNHN-Ga 3078).
BIOCAL : stn 45, 430-465 m: 2 o 16.0 and $17.0 \mathrm{~mm} ; 1 \mathrm{ov}$. $916.3 \mathrm{~mm}(\mathrm{MNHN} \cdot \mathrm{Ga} 3077)$. - $\operatorname{Sin} 77,440 \mathrm{~m}: 1$ ot 6.7 mm (MNHN-Ga 3348). - $\operatorname{Stn} 78,445.450 \mathrm{~m}: 6$ ठ 8.2 to $15.3 \mathrm{~mm} ; 3$ ov. 911.6 to $16.8 \mathrm{~mm} ; 7$ I 6.3 to 10.0 mm (MNHN-Ga 3080). - Stı 109, 495-515 m: 20.15 .0 and 16.4 mm (MNHN-Ga 3081).

MUSORS'ROM $4: \sin 170,485 \mathrm{~m}: 4$ o 10.0 to $14.7 \mathrm{~mm} ; 11$ ov. 911.3 to $16.4 \mathrm{~mm} ; 6$ of 5.3 to 12.8 mm (MNHN.Ga 3082). - Stn 179, $480 \mathrm{~m}: 5$ of 10.0 to $15.2 \mathrm{~mm} ; 5$ ov. 오 11.7 to $14.2 \mathrm{~mm} ; 6$ 여 6.3 to 13.8 mm (MNHN-Ga 3083). Stn 180, $450 \mathrm{~m}: 2$ 오 5.3 and $5.5 \mathrm{~mm} ; 2$ juv. 4.3 and 5.1 mm (USNM). - $\operatorname{Sin} 195,470 \mathrm{~m}: 1 \$ 13.6 \mathrm{~mm}$ (MNHN-Ga 3085). - $\operatorname{Sin} 201,500 \mathrm{~m}: 2$ of 14.4 and $16.6 \mathrm{~mm} ; 5 \mathrm{ov}$. 913.5 to $15.1 \mathrm{~mm} ; 1$ juv, 4.6 mm (MNHN-Ga 3086). $\operatorname{Stn} 202,580 \mathrm{~m}: 1$ d 12.5 mm (MNHN-Ga 3087). - Stn 229. 445-460 m: 1 ov. 911.6 mm (MNHN-Ga 3088). - Sin $236,495-550 \mathrm{~m}: 9$ of 7.2 to $14.3 \mathrm{~mm} ; 2 \mathrm{ov} . \& 12.9$ and $14.7 \mathrm{~mm} ; 5 \% 7.3$ to $10.4 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 2654)$. - Sin 239, $470-475 \mathrm{~m}: 1 \delta 15.0 \mathrm{~mm} ; 2 \mathrm{ov}$. $\$ 12.3$ and $13.4 \mathrm{~mm} ; 3$ \& 7.2 Io 8.2 mm (MNHN.Ga 3089). - $\operatorname{Stn} 243,435-450 \mathrm{~m}$: 1 б $5.5 \mathrm{~mm} ; 1$ ov. 오 $12.2 \mathrm{~mm} ; 295.1$ and 7.4 mm (MNHN.Ga 3090). - $\operatorname{Stn} 247,435-460 \mathrm{~m}: 1$ ov. 오 $14.2 \mathrm{~mm} ; 1$ of 6.5 mm (MNHN-Ga 3091).

Loyalty Islands. "Vauban" : stm 34, $400 \mathrm{~m}: 1$ 우 15.4 mm (MNHN.Ga 3077).
MUSORSTOM $6: \operatorname{stn} 415,461 \mathrm{~m}: 1$ ov. 우 13.6 mm (MNHN-Ga 3092). - $\operatorname{Stn} 465,480 \mathrm{~m}: 1$ of 15.0 mm ; 1 و 12.8 mm (MNHN-Ga 3093), - $\operatorname{Stn} 467,575 \mathrm{~m}: 6$ б 9.6 to $16.3 \mathrm{~nm} ; 3 \mathrm{ov} . Q 11.3$ to $14.3 \mathrm{~mm} ; 1198.7$ to 15.6 mm (MNHN-Ga 3094).

Admiralty lslands. "Challenger" : stn 219, $01^{\circ} 54^{\prime} 00^{\prime S}$ S. $146^{\circ} 39^{\prime} 40^{\prime \prime} \mathrm{E}, 278 \mathrm{~m}, 10.3 .1875: 2$ of 8.4 and 10.3 mm ; $1 \mathrm{ov} . \& 10.8 \mathrm{~mm}$, lypes (BM).

REMARKS. - The malerial from New Caledonia agrees quile well with lype specimens from Admiralty Islands. The colour pallern is as follows: Ground colour of carapace and abdomen orange; yellow spols on gastric and cardiac regions; cpigastric and mesogastric regions purple; dark orange spols on abdominal segments. Chetipeds and walking legs wilh red and whitish bands; terminal hhird of palm and proximal hird of tingers of chelipeds red; distal parl of dactylus of walking legs red.

SIZE. - The males examined ranged between 5.5 and 17.0 mm , females belween 5.1 and 16.4 mm ; ovigerous females from 10.8 mm .

DISTRIBUTTON. - Admiralty Islands. New Caledonia and Loyally Islands, between 278 and 580 m .

Munida stia sp. nov.

Fig. 53
Material examined. - New Caledonia. Blocal : $\operatorname{stn} 38.360 \mathrm{~m}: 1 \delta 3.6 \mathrm{~mm}$ (MNHN.Ga 3095) - Sin 44, $440-450 \mathrm{~m}: 2$ ot 2.8 and 3.0 mm (USNM). - Stn 66, $505-515 \mathrm{~m}: 4 \delta 3.8$ to 5.5 mm (MNHN-Ga 3349).

Chesterfield Islands. Musorstom $5: \operatorname{stn} 301,487-610 \mathrm{~m}: 1 \delta 4.2 \mathrm{~mm}$ (MNHN-Ga 3097). - Sin 305, 430$440 \mathrm{~m}: 2$ o 3.5 and 4.5 mm (MNHN.Ga 3098). - Stn 339, $380-395 \mathrm{~m}: 3$ ot 4.3 and $4.6 \mathrm{~mm} ; 1 \mathrm{ov}$. 94.0 min (MNHNGa 3099 and USNM). - Sin 361, $400 \mathrm{~m}: 1 \delta 4.3 \mathrm{~mm} ; 2$ ㅇ 4.0 and 4.1 mm (MNHN-Ga 3100). - Sin 362. $410 \mathrm{~m}: 1 \delta^{\text {o }}$ 3.8 mm (MNHN-Ga 3101).

TYPES. - The male of 3.6 mm from BIOCAL, $\operatorname{Sin} 38$ (MNHN-Ga 3095) has been selecled as holotype; the other specimens are paralypes.

Etymology. - From the Greck, stia, small stone, in reference to the small size of the species. The name is considered as a subslanlive in apposilion.

DESCRIPTION . - Carapace wilh few secondary slriae. Intestinal region withoul scales. Exlernal orbital spine short, siluated at anterolateral angle of carapace. Branchial margin with 5 small spines. Fourlh 1horacic siemite
with few short arcuatc striac; fifth to seventh smooth. Abdominal segments unarmed. Second to fifth segments each with one transverse continuous stria. Males with lwo pairs of gonopods on firsl and second abdominal segments. Eyc large, maximum comeal diameter ahout $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Basal segment of anlennule (distal spines excluded) not exceeding cornea, distomesial spine shorter than distolateral. First segment of antennal peduncle with distomesial spine not reaching end of second segment; distoncsial spine on second segment exceeding third segment. Exlensor margin of merus of third maxilliped with small distal spinc. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial borders, respectively. Dactylus of walking legs $2 / 3$ propodus lengith, with spinules along ventral margin, lerminal third unarmed.

REMARKS. - M. stia is closely related 10 M. Iepitis sp. nov. from New Caledonia and Loyally Islands and they difler in several features :

- The movable finger of the cheliped has one basal spine in M. leptitis, whereas in M. stia there is a row of spines along the mesial margin.
- The dactylus of the walking legs have spines along the entire ventral border in M. leptitis, unarmed on the terminal third in M. stia.

SIZE. - The males examined ranged between 2.8 and 5.5 mm , females between 4.1 and 4.6 mm ; ovigerous female from 4.0 mm .

Distribution. - New Caledonia and Chesterfield Islands, between 360 and 610 m .

Munida stigmatica sp. nov.

Fig. 54. 85
MATER1AL EXAMINED. - New Caledonia. Stn without position, $250 \mathrm{~m}, 13.09 .198 .5: 4$ of 4.0 to 8.2 mm ; 4 ov . ㅇ 8.2 to 9.0 mm ; 4 ㅇ 4.9 to 7.5 mm (MNHN-Ga 3353).

MUSORSTOM $4: \operatorname{stn} 182,305 \mathrm{~m}: 2 \delta 7.5$ and 9.0 nm ; 1 ov. 96.8 mm (MNHN-Ga 3354).
CiAalCal 2: sin 19, 27I m:5 of 5.6 to 10.1 mm (MNHN-Ga 3103). - Stn 78, 233-360 m : 1 of 11.8 mm ; 2 of 5.5 and 5.7 mm (USNM).

Smbi $3: \sin 18,3.38 \mathrm{~m}: 1$ of 10.6 mm (MNHN-Ga 3105).
SMib $5: \sin 84,290 \mathrm{~m}: 1$ б $8.4 \mathrm{~mm}(\mathrm{mNHN}-\mathrm{Ga} 3106) .-\operatorname{Sin} 86,320 \mathrm{~m}: 1 \delta 8.5 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 3350) .-\operatorname{Sin} 87$. $335-370 \mathrm{~m}: 1$ § $3.8 \mathrm{~mm} ; 1$ \& $5.0 \mathrm{~mm}(\mathrm{MNHN-Ga} 3351)$. - $\operatorname{Stn} 97,300 \mathrm{~m}: 1 \delta 10.0 \mathrm{~mm} ; 1$ ov. \& $9.0 \mathrm{~mm} ; 1$ of 9.5 mm (MNHN Ga 3352).

Matthew and Hunter Istands. Volsmar : $\operatorname{stn} 7.400 \mathrm{~m}: 1 \% 7.5 \mathrm{~mm}$ (MNHN-Ga 3107).
Chesterfield Islands. Chalcal 1: $\sin 67.277 \mathrm{~m}:$ I ov. 96.1 mm (MNHN-Ga 3108).
Musorstom $5: \operatorname{stn} 273,290 \mathrm{~m}: 2$ o 4.2 and 4.9 mm (MNHN. Ga 3109). - $\operatorname{Stn} 280,270 \mathrm{~m}: 1$ o 5.3 mm (MNHN-Ga 3110). $-\operatorname{Sin} 299,360.390 \mathrm{~m}: 10$ ठ 4.0 to 7.8 mm ; 7 ov . 94.7 to $6.0 \mathrm{~mm} ; 1$ o 5.0 mm (MNHN-Ga 3111). - Sin $302,345-360 \mathrm{~m}: 2 \delta 3.4$ and 5.5 mm ; $1 \circ 4.2 \mathrm{~mm}$ (MNHN-Ga 3112).

TYpes. - The male of 10.6 mm from S MIB 3, $\operatorname{Stn} 18$ (MNHN-Ga 3105) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Greek, stigma, mark, in reference to the spots on the carapace and pereiopods.
DESCRIPTION. - Carapace with sccondary striae between principal striac. Intestinal region without scales. External orbital spine situated at anterolatcral angle ol carapace. Branchial margin with 5 spines. Fourth and fifith thoracic sternites with few short arcuate striac; lateral parts of seventh sternite with small granules. Second abdominal segment with 2 spines on each side of anterior ridge. Second to fourth segments each with several transverse continuous striac. Eye large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spincs. Basal segment of antennule (distal spines excluded) slightly exceeding cornca, distomesial spine longer than distolateral. First segment of antennal peduncle with long distomesial spine reaching end of third segment; distomesial spine on second segment exceeding antennal peduncle. Extensor border of

Fig. 53. - Munida stia sp. nov., б 3.6 mm , holotype from Stn 38 (Biocal) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, left first walking leg, lateral view; \mathbf{g}, dactylus of left first walking leg, lateral view.

Fig. 54. - Munida stigmatica sp. nov., $\delta 10.6 \mathrm{~mm}$, holotype from $\operatorname{Stn} 18$ (S.MiB 3) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.
merus of third maxilliped with a small distal spinc. Fixed and movable fingers of cheliped with a row of spines along lateral and mesial borders. respectively. Dactylus of walking legs half as long as propodus, with movable spinules along ventral margin, distal third unamed.

COLOUR. - Ground colour of carapace and abdominal segments light orange, striae reddish. Rostrum and supraocular spines red. Ground colour of chelipeds and walking legs whitish, spines and some granules reddish. Distal half of chelipeds with red spots, tip whitc. Dactylus of walking legs whitish.

RFMARks. - M. stigmatica betongs to the group of species with 5 spines on each branchial margin and the second abdominal segment unarmed or with spines on both sides of the anterior ridge. However, the new species is easily differentiable from the other species of this group by the presence of granules on the lateral parts of the seventh thoracic sternite.

Stze. - The males examined ranged between 3.4 and 11.8 mm , females between 4.2 and 9.5 mm ; ovigerous female from 4.7 mm .

Distribution. - New Caledonia, Mathew and Hunter 1slands and Chesterfield Islands, between 233 and 400 m .

Munida taenia sp. nov.

Figs 55, 86
MATERIAL EXAMINFD. - New Catedonia. MuSorstom $4: \sin 212,375.380 \mathrm{~m}: 1$ ov. 아 6.5 mm (MNHN-Ga 3355). - Stn 227, $320 \mathrm{~m}: \mathrm{t}$ 오 4.6 mm (MNHN Ga 3113). - $\operatorname{Sin} 234,350.365 \mathrm{~m}: 1$ d $4.5 \mathrm{~mm} ; 1$ ov. $96.0 \mathrm{~mm} ; 4$ 우 3.0 to 4.5 mm (MNHN-Ga 3356).

Chalcat. $2: \operatorname{stn} 26.296 \mathrm{~m}: 5$ \% 8.1 to $9.0 \mathrm{~mm} ; \mathrm{t}$ ov. $99.6 \mathrm{~mm} ; 288.5$ and 9.0 mm (USNM). - Sta $27,289 \mathrm{~m}$: 1 of 7.9 mm (MNHN.Ga 3 t 15). - Stn 78, $233.360 \mathrm{~m}: 3$ o 4.8 to 6.5 mm (MNHN-Ga 3t16). -Stn 81, $3 \mathrm{tt} \mathrm{m}: 1$ o 4. t mm (MNHN-Ga $3 \mathrm{tt7}$), - Stn $83,200 \mathrm{~m}: 3$ of 6.4 to $7.7 \mathrm{~mm} ; 2$ ov. 95.3 and $6.9 \mathrm{~mm} ; 1$; 3.8 mm (MNHN.Ga 3t18).

Smib 4 : slı $55,260 \mathrm{~m}: 2$ of 5.6 and $8.8 \mathrm{~mm} ; 2 \mathrm{ov}$. 95.5 and 7.1 mm (MNHN-Ga 3t19). -Stn 56, $260 \mathrm{~m}: 1$ of 7.5 mm (MNHN.Ga 3120).

SMib $5: \operatorname{stn} 70,260-270 \mathrm{~m}: 2$ o 7.7 and $8.0 \mathrm{~mm} ; 2$ ov. $\% 6.5$ and 8.5 mm (MNHN-Ga 3357). - Stn 101, 225$270 \mathrm{~m}: 6 \delta 5.0$ to $8.0 \mathrm{~mm} ; 7 \mathrm{ov}$. \& 6.0 to 7.5 (MNHN.Ga 3358). - $\operatorname{Stn} 102,290.305 \mathrm{~m}: 7 \delta 4.2$ to $8.5 \mathrm{~mm} ; 5 \mathrm{ov}$. 오 5.5108 .2 mmm (MNHN-Ga 3359). 一Stn t03, $315 \mathrm{~m}: 3$ o 5.8 to $7.6 \mathrm{~mm} ; 6$ ov, 95.2 to $9.0 \mathrm{~mm} ; 295.2$ and 9.0 mm (MNHN.Ga 3204). - Sin 104, 305.335 m: 6 б 5.0 to $8.0 \mathrm{~mm} ; 3$ ov. ㅇ 6.5108 .0 mm (MNHN-Ga 3360),

Chesterfield Istands. CHAl.CAL I : sth $8,348 \mathrm{~m}: 1 \% 7.1 \mathrm{~mm} ; 2$ ov. 87.0 and 7.8 mm (MNHN-Ga 3121). $\operatorname{Stn} 32,350 \mathrm{~m}: 1$ ov. 96.8 mm (MNHN-Ga 3122).

MUSORSTOM $5: \operatorname{stn} 339,380-395 \mathrm{~m}: 1$ ov. $95.7 \mathrm{~mm} ; 1$ ㅇ 4.8 mm (MNHN-Ga 3123). - Stn 36t, $400 \mathrm{~m}: 3 \delta 5.3$ $106.9 \mathrm{~mm} ; 5$ ov, 95.2 to 7.9 mm (MNHN-Ga 3124). - Sin 378, $355 \mathrm{~m}: 1$ ov. 96.7 mm (MNHN Ga 3125).

Types. - The male of 7.5 mm Irom SmtB 4, Stı 56 (MNHN.Ga 3120) has been selected as holotype; the other specimens are paratypes.

Etymology. - From the Greck, lainia, band, in reference to coloured bands of the carapace. The name is considered as a substantive in apposition.

DESCRIPTION. - Carapace with few secondary striae. Intestinal region without scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth and fifth thoracic sternites with few arcuate striae; lateral parts of sixth and seventh thoracic sternites with many small granules. Second abdominal tergite wilh a row of 6-7 spines on anterior ridge (one specimen with only 2 spines on each side). Second to fourth segments each with several transverse striac. Males with (wo pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum conneal diameter about $1 / 3$ length of anterior border of carapace between bases ol external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea. distomesial spine slightly longer than distolateral. First segment of antenna! peduncle with long
distomesial spine reaching end of antennal peduncle; dislomesial spine on second segment dislinetly exceeding anlennal peduncle. Extensor border of menus of third maxilliped with dislal spine. Movable finger of cheliped wilh 3 spines on proximal half of mesial margin, and one subdislal spine; fixed finger wilh a row of spines along lateral border. Dactylus of walking legs less than $1 / 2$ propodus length, with movable spinules along entire veniral margin.

Colour. - Ground colour of carapace and abdominal segmenls orange, striae reddish. Rosirum and supraocular spines orange. Chelipeds orange. some spines and granulcs red; dislal part of palm and fingers whilish. Walking legs wilh 1ransverse whitish and orange bands.

Remarks. - M. taemia is closely related to M. pomoporea sp. nov. from New Caledonia, but they differ in several aspects :

- The frontal margin is moderately obliquc in M. pontoporea, transverse in M. taenia.
- The antennular peduncle dislinclly excecds the cornea in M. pontoporea. whereas only reaches the end of the cornea in M. taenia.
- The merus of the third maxilliped has one distal spine on the extensor border in M. taenia, this spinc is absent in M. pontoporea.
- The dactylus of the walking legs are more longer and slendercr in M. pomoporea 1han in M. taenia.

StzE. - The males examined ranged between 4.1 and 9.0 mm , femates belween 3.0 and 9.6 mm ; ovigerous females from 5.2 mm .

Distribution. - New Caledonia and Chcsterficld lslands. belween 200 and 400 m .

Munida thoe sp. nov.
Figs 56, 87
Material examined. - New Catedonia. Biocal : stn $8,435 \mathrm{~m}: 3$ o 8.0 to $10.0 \mathrm{~mm} ; 2 \mathrm{ov} .98 .3$ and 9.4 mm (MNHN-Ga 3361). - $\operatorname{Stn} 67,500 \mathrm{~m}: 1 \mathrm{ov}$. 오 15.5 mm (MNHN.Ga 3126). - Stn 83, $460 \mathrm{~m}: 1$ \& 12.4 mm (MNHN-Ga 3362).

MUSORsTOM $4: \operatorname{stn} 156,530 \mathrm{~m}: 3$ o 6.8 to $17.1 \mathrm{~mm} ; 1$ ov. $913.2 \mathrm{~mm} ; 3$ \& 6.4 to 7.3 mm (MNHN-Ga 3363). $\operatorname{Stn} 194,550 \mathrm{~m}: 11$ of 10.2 to $15.2 \mathrm{~mm} ; 5 \mathrm{ov} .99 .1$ to $14.0 \mathrm{~mm} ; 5$ ㅇ 7.5 to 11.5 mm (MNHN-Ga 3128). - Stn 195, $370 \mathrm{~m}: 2$ of 9.7 and $10.3 \mathrm{~mm} ; 3$ ov. 910.4 to 12.0 mm (MNHN-Ga 3129). - $\operatorname{Stn} 216,490-515 \mathrm{~m}: 2$ of 15.7 and $18.3 \mathrm{~mm} ; 1$ ㅇ 10.0 mm (MNHN-Ga 3364)

Smib 2 : stп 26, $500.535 \mathrm{~m}: 1$ ठ 19.0 (MNHN-Ga 3130).
Chalcal 2 : stn $1,500 \mathrm{~m}: 16 \delta 11.0$ to $19.7 \mathrm{~mm} ; 7 \mathrm{ov} .99 .6$ to $16.0 \mathrm{~mm} ; 3$ \& 11.3 to 15.0 mm (MNHN-Ga 3131, 3132). - Stn 2, $500-580 \mathrm{~m}: 3$ of 11.2 to $19.0 \mathrm{~mm} ; 3 \mathrm{ov}$. क 14.5 to $18.0 \mathrm{~mm} ; 2 \% 12.6$ and 13.6 mm (MNHN-Ga 3133 and USNM). - Stn 21, $500-610 \mathrm{~m}: 19 \delta 7.2$ to $18.2 \mathrm{~mm} ; 2 \% 10.1$ and 11.8 mm (USNM). - $\operatorname{Stn} 73,573 \mathrm{~m}: 2$ of 9.3 and 12.0 mm ; lov. 99.8 mm (MNHN.Ga 3135) - $\operatorname{Sin} 75,600 \mathrm{~m}: 1 \delta 6.4 \mathrm{~mm} ; 295.8$ and 7.9 mm (MNHN-Ga 3136).

BIogeocal : stm 291, 510-520 m: 1 © $6.6 \mathrm{~mm} ; 1 \mathrm{ov} .910 .0 \mathrm{~mm}$ (MNHN-Ga 3365).
SmtB 3 : stn 1, $520 \mathrm{~m}: 1$ © 11.0 min: 3 ov .98 .6 to 14.9 mm (MNHN-Ga 3137). - Sin $2.530 \mathrm{~m}: 1 \delta 12.8 \mathrm{~mm}$ (MNHN-Ga 3366). - Sin 3, $513 \mathrm{~m}: 3$ б 5.2 to $11.0 \mathrm{~mm} ; 1 \% 5.4 \mathrm{~mm}$ (MNHN-Ga 3138). - Sin 4, $530 \mathrm{~m}: 1 \delta$ $16.1 \mathrm{~mm} ; 2 \mathrm{ov}$. 915.0 and 16.7 mm (MNHN Ga 3367).

Smib $4: \sin 34,515 \mathrm{~m}: 1$ of $12.4 \mathrm{~mm} ; 1$ 우 17.3 mm (MNHN Ga 3139). — $\operatorname{Stn} 37,540 \mathrm{~m}: 1$ б 10.0 mm (MNHN-Ga 3140). - Stп $38,510 \mathrm{~m}: 1$ ㅇ 10.4 mm (MNHN-Ga 3141). - $\operatorname{Sin} 39,560 \mathrm{~m}: 1910.0 \mathrm{~mm}$ (MNHN-Ga 3142).$\operatorname{Stn} 55,260 \mathrm{~m}: 4 \mathrm{ov}$. 99.3 to $14.2 \mathrm{~mm} ; 197.2 \mathrm{~mm}$ (MNHN Ga 3368).

Matthew and Hunter Islands. Volsmar : $\operatorname{stn} 51,450 \mathrm{~m}: 1 \% 12.5 \mathrm{~mm}$ (MNHN-Ga 3143).
TYPES. - The male of 14.8 mm from Chalcal 2, Stn 1 (MNHN-Ga 3131) has been selected as holotype; the other specimens are paratypes.

Etymology. - The name refers to one of the Oceanids of the Greek mythology (Thoë).

Fig. 55. - Munida taenia sp. nov., $\delta 7.5 \mathrm{~mm}$, holotype from Stn 56 (Smib 4) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Fig. 56. - Munida thoe sp. nov.. $\delta 14.8 \mathrm{~mm}$, holotype from $\operatorname{Sin} 1$ (ChalCal 2) : a. carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region. showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; \mathbf{g}, dactylus of right first walking leg, lateral view.

DESCRIPTION. - Carapace with numerous secondary striac. Intestinal region with several small scales. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite smooth or with few short arcuate striae; fifth to seventh sternites smooth. Second abdominal tergite with a row of 4 pairs of spines on anterior ridge. Sccond to fourth segments each with 4-6 transverse striac. Males with 1 wo pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum comeal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornca, with 2 subequal distal spincs, occasionally distolateral spine slightly longer than distomesial. First segment of antennal peduncle with distomesial spine reaching end of second segment; distomesial spinc on second segment not exceeding antennal peduncle. Extensor margin of merus of third maxilliped unarmed. Movable finger of cheliped with one mesial spine near its base; fixed finger with one row of spines along lateral border. Dactylus of walking legs half as long as propodus, with movable spinules along entire ventral margin.

Colour. - Ground colour of carapace and abdominal segments orange; epigastric, mesogastric, anterior branchial, anterior part of cardiac and intestinal regions purple. Rostrum, supraocular spines and spines on dorsal surface of carapace orange. Chelipeds and walking legs with transverse whitish and reddish bands. Distal half of fingers of cheliped and dactylus of walking legs whitish.

Remarks. - M. thoe is closely related to M. elachia sp. nov. from New Caledonia, and M semoni Orimann from Indonesia and New Calcdonia. M. thoe is casily differentiable from M. semoni by the armature of the dactylus of the walking legs. The ventral margin of the dactylus is unarmed on the terminal third in M. semoni, whereas in M. thoe the spines are along the entire ventral margin.
M. thoe is casily differentiable from M. elachia by the presence of numerous secondary striae on the carapace and abdominal segments and the dactylus of the walking legs, which is half as long as the propodus. \ln M. elachia the secondary striac on the carapace are nearly absent and the second and third abdominal segment each have one transverse stria, furthermore the dactylus of the walking legs is slightly shorter than the propodus. The colour patterns are also different in both species (sce Figs 71 and 87).

SIZE. - The males examined ranged between 5.2 and 19.7 mm , females from 5.8 and 18.0 mm ; ovigerous females from 8.3 mm .

Distribution. - New Caledonia, Mathew and Hunter lslands, between 260 and 610 m.

Munida tiresias sp. nov.

Fig. 57
Material examined. - New Caledonia. Biocal : stn 26, 1618-1740 m: 184.5 mm (MNHN-Ga 3144). $\operatorname{Sin} 30,1140 \mathrm{~m}: 2$ 오 4.2 and 5.4 mm (MNHN.Ga 3145). - $\operatorname{Sin} 68,1430-1470 \mathrm{~m}: 1 \delta 5.4 \mathrm{~mm}$ (MNHN-Ga 3146).

Biogeocal : $\operatorname{stn} 214,1590-1665 \mathrm{~m}: 1 \delta 3.2 \mathrm{~mm} ; 1 \%$ broken (MNHN-Ga 3147).
Calsub : stn 13, 04.03.1989. $21^{\circ} 26^{\prime} \mathrm{S}, 167^{\circ} 22.7 \mathrm{E}, 1567-1807 \mathrm{~m}: 1 \delta 5.1 \mathrm{~mm}$ (USNM). - $\operatorname{Sin} 17,08.03 .1989$, $21^{\circ} 25^{\prime} \mathrm{S}, 166^{\circ} 24^{\prime} \mathrm{E}, 1753-2049 \mathrm{~m}: 1 \% 2.8 \mathrm{~mm}$ (MNHN-Ga 3149).

TYPES. - Onc male of $5,4 \mathrm{~mm}$ from Biocal. Stn 68 (MNHN-Ga 3146) has been selected as holotype; the other specimens are paratypes.

Etymology. - In reference to the very small eyes. Tiresias is the son of Eueres and Chariclo, who was blinded by Ale nea.

DESCRIPT1ON. - Carapace with gastric region anteriorly elevated. Gastric, hepatic and anterobranchial regions squamate. Transverse ridges on branchial and cardiac regions mostly interrupted. Intestinal region with small scales. Gastric region with a row of epigastric spines, rest of dorsal carapace surface unarmed. External orbital

Fig. 57. - Munida tircsias sp. nov.. $\% 5.4 \mathrm{~mm}$, holotype from $\operatorname{Sin} 68$ (Blocal) : a, carapace. dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, left first walking leg, lateral view; g. dactylus of left first walking leg, lateral view.
spine very small rather mesial to level of second spine; second spine situated al anterolateral angle and similar insize to preceding spine. Branchial margins with 5 small spines. Thoracic sternites smooth. Abdominal segments unarmed. Second abdominal segment with one transverse continuous stria; third to fifth segments without striae. Males with two pairs of gonopods present on first and second abdominal segments. Eyes small, maximum corneal diameler less than $1 / 5$ lengit of anterior border of carapace between bases of external orbital spines. Basal segmenl of antennule (dislal spines excluded) large, distinctly exceeding cornea and reaching lip of rostrum, dislomesial spine very small dislinctly shorter than dislolateral. First segment of antennal peduncle with short distomesial spine dislinclly not reaching end of second segment; distomesial spine on second segment not exceeding third segment. Extensor border of merus of third maxilliped unarmed. Chelipeds with iridiscen setae more dense on mesial borders of arlicles, carpus and palm setose; movable finger unarmed; fixed finger with several small distal spines. Dactylus of walking legs $2 / 3$ propodus length, with movable spinules along entire ventral margin.

Remarks. - M. tiresias is very close 10 M. magniantennulata Baba \& Türkay, 1992, from active thermal vent areas in Valu-Fa ridge, Lau Basin (Baba \& Turkay, 1992; Baba \& de Saint Laurent, 1992). However, M. tiresias has the external orbital and the second lateral spines on the carapace small, subequal, and the first spine is placed on frontal margin. the second is situated al anterolateral angle. \ln M. magniantennulata the firsl spine is well developed, distinctly longer than the second, and siluated at anlerolaleral angle.

SIZE. - The males examined ranged between 3.2 and 5.4 mm . females between 2.8 and 5.4 mm ; no ovigerous females were collected.

Distribution. - New Caledonia. between 1140 and 2049 m .

Munida tuberculata Henderson, 1885

Fig. 58
Munida uberculata Henderson, 1885: 413; 1888: 145, pl. 15, fig. 2. - BABA, 1988: 83 (key).
MATERIAL EXAMINED. - New Caledonia. Blocal: $\sin 8,435 \mathrm{~m}: 1 \mathrm{ov}$. $\uparrow 4.7 \mathrm{~mm} ; 194.0 \mathrm{~mm}$ (MNHN-Ga 3150).

Chal.cal $2: \operatorname{stn} 74,650 \mathrm{~m}: 1 \delta 4.8 \mathrm{~mm}$ (MNHN.Ga 3151). - Stn $75,600 \mathrm{~m}: 1 \delta 4.6 \mathrm{~mm} ; 2$ ov. 84.3 and 4.4 mm (USNM).

Mattiew and Hunter Istands. Volsmar : $\operatorname{stn} 51,450 \mathrm{~m}: 1 \mathrm{ov} .94 .7 \mathrm{~mm}$ (MNHN Ga 3153). - $\operatorname{Sin} 52,510 \mathrm{~m}$: 1 \& 4.0 mm (MNHN-Ga 3154).

Fiji. "Challenger" : sin $173,24.07 .1874,19^{\circ} 09^{\prime} 35^{\prime \prime} \mathrm{S}, 179^{\circ} 41^{\prime} 50^{\prime \prime} \mathrm{E}, 583 \mathrm{~m}: 1 \delta^{*} 5.4 \mathrm{~mm} ; 193.7 \mathrm{~mm}$, types (BM).

Remarks. - The material from New Caledonia agrees with the type specimens. The species is again illustraled in order lo clarify its taxonomic status. The diagnosis of the species is: carapace granulaled in hepatic and anterior branchial regions, epigastric spines granulated. Frontal margins transverse. Rostrum horizontal; supraocular spines short. Branchial margin wilh 5-6 spines on each side. Thoracic sternites smooth. Second abdominal segment with 3 pairs of spines. Males with two pairs of gonopods on abdominal segments. Eye large, maximum comeal diameter about $1 / 2$ length of anterior border of carapace between bases of external orbital spines. Distomesial spine on basal segment of anlennular peduncle slightly shorter than distolateral. Antennal peduncle reduced. Extensor border of merus of third maxilliped with small distal spine. Fingers of cheliped granulated; fixed finger with a row of small spines along tateral margin. Dactylus of walking legs half as long as propodus, with a row of spinules along entire ventral border.

SIZE. - The males examined ranged between 4.6 and 5.4 mm ; females between 3.7 and 4.7 mm ; ovigerous females from 4.3 mm .

Distribution. - New Caledonia, Mathew and Hunter Islands. Fiji, between 435 and 650 m .

Fig. 58. - Munida hberculata Henderson, 1885 б. 4.6 mm , from Stn 75 (ChalCal 2) : a carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view: e, tight cheliped, dorsal view; f. tight first walking leg, lateral view; g. dactylus of right first walking leg, lateral view.

Munida tyche sp. nov.

Fig. 59
Material examined. - New Caledonia. Blocal : stn $84,150-210 \mathrm{~m}: 1 \delta 10.6 \mathrm{~mm}$ (MNHN-Ga 3369).
 8.6 and 9.0 mm ; 4 ¢ 5.5109 .0 mm (MNHN-Ga 3156). - Stn $186,205 \mathrm{~m}: \mathrm{t} \delta 10.6 \mathrm{~mm}$ (MNHN-Ga 3157). - Stn 190 ,
 3t.59).
 $7.2 \mathrm{~mm} ; 2$ ¢ 5.8 and 6.5 mm (MNHN-Ga 3163).

Lagon : stn 190, 135-150 m: $1 \delta 10.0 \mathrm{~mm}$ (MNHN-Ga 3372). - $\operatorname{Stn} 370,127 \mathrm{~m}: 1 \delta 6.8 \mathrm{~mm}$ (MNHN-Ga 3373). —Sin 1146, $185 \mathrm{~m}: 1 \delta 5.5 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 337 \mathrm{t})$.

Chesterfield Istands. Chalcal $1: \operatorname{stn} 30, \mathrm{t} 50-\mathrm{t} 80 \mathrm{~m}: 1 \delta 9.7 \mathrm{~mm}$ (MNHN-Ga 3164).
CORALL 2 : $\operatorname{stn} 129,2 t 5 \mathrm{~m}: 6 \delta 5.0$ to $7.0 \mathrm{~mm} ; 1 \mathrm{ov}$. $96.8 \mathrm{~mm} ; 197.0 \mathrm{~mm}$ (MNHN-Ga 3370). - Stn $131,215-$ $217 \mathrm{~m}: 17$ oे 5.0 to $8.3 \mathrm{~mm} ; 12 \mathrm{ov}$. $\$ 5.7$ to $8.4 \mathrm{~mm} ; 3$ 오 6.4 to 7.2 mm (MNHN-Ga 3160, 316 t).

TYPES. - The male of 7.4 mm from Corail 2, Stn 131 (MNHN-Ga 3160) has been seleeted as hololype; the other specimens are paratypes.

Efymology. - The name refers to one of the Occanids of the Greek mythology (Tyehe).
DeSCRIIfION. - Carapace with few secondary striae. Striae not interrupted on intestinal region. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 5 spines. Fourth thoracic sternite with few short arcuate striae; fifth to seventh without striae; lateral parts of sixth and seventh thoracic sternites with some coarse granules. Second abdominal tergite with a row of 3-4 pairs of spines on anterior ridge. Second to fourih segments each with 3-4 transverse striae. Males with two pairs of gonopods on first and second abdominal segments. Eye moderately large, maximum corneal diameter about $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) exceeding cornca, with 2 subequal distal spines. First segment of antennal peduncle with long distomesial spine nearly reaching end of third segment; distomesial spine on second segment distinetly exceeding antennal peduncle. Extensor border of merus of third maxilliped with small distal spinc. Movable and fixed finger of cheliped with several spines along proximal half of mesial and lateral borders, respectively; one and 2 subdistal spines on movable and fixed finger, respectively. Dactylus of walking legs half as long as propodus, with movable spinules along ventral margin, terminal fourth unarmed.

REMARKS. - M. tyche is closely related to M. idyia sp. nov. from New Caledonia but they differ in several features:

- The distal spines on the basal antennular segment are subequal in M. byche; whereas the distolateral spine is slightly shorter than the distomesial in M. idyia.
- The distomesial spine on the antennal basal segment reachs the end of the antennal peduncle in M. idyia, whereas this spine nearly reachs the end of the third segment in M. tyche.
- The movabic finger of the cheliped has only one basal and one distal spinc in M. idyia, whereas there are several spines along the first half of the mesial margin in M. tyche.

SIZE. - The males examined ranged between 4.2 and 10.6 mm , females between 4.4 and 11.3 mm ; ovigerous females from 5.7 mm .

Distribution. - New Caledonia and Chesterfield lslands, between 127 and 235 m .

Munida typhle sp. nov.
Fig. 60
Material examined. - New Catedonia. Biocal : stn 62, 1395-t410 m: 1 § 5.6 mm , paratype (MNHN.Ga 3165). $-\operatorname{Stn} 68,1430-1470 \mathrm{~m}: 1 \% 6.9 \mathrm{~mm}$. holotype (MNHN-Ga 3166).

FIG. 59. - Munida tyche sp. nov., o 7.4 mm , holotype from Stu 131 (CORAlL 2) : a carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking
leg, lateral view.

Etymology. - From the Greek, typhlos, blind, in reference to the smalt cornea. The name is considered as a substantive in apposition.

DESCRIPTtON . - Carapace with gastric region anteriorly cle vated. Secondary striae present, anterior branchial region squamate. Intestinal region with scales. Gastric region with a row of 5 pairs of epigastric spines. No other spines on dorsal surface of carapace. Supraocular spines overreaching eyes. External orbital spine well developed, situated at anierolateral angte of carapace; second marginal spine smaller than preceding one situated at midlength of hepatic margin between first spine and cervical groove. Branchial margin with 5 small spines. Thoracic sternites without striac. Second abdominal segment with a row of 4 spines on anterior ridge. Second and third segments each with one transverse continuous striae; fourth and fifth segmenis without striae. Two pairs of gonopods on first and second abdomimal segments. Eye small, cornea nol dilated, maximum corncal diameter about $1 / 6$ length of anterior border of carapace between bases of external orbital spincs. Basal segment of antennule (distal spines excluded) unusually targe, distinctly exceeding cornea, disiomesial spine distincily shorter than distolateral. First segment of antemnal peduncle with distomesial spine nearly reaching end of second segment; distomesial spine on second segment reaching end of third segment. Extensor border of merus of third maxilliped unarmed. Fixed finger of cheliped with several spines atong proximal half of lateral margin and one sublerminal spine; movable finger with proximal spine. Dactylus of walking legs slightly shorter than propodus, with movable spinules along entire ventral margin.

Remarks. - M. typhle sp. nov. is closely related Io M. maguiautennulata Baba \& Türkay. 1992, from thermal vents of Lau Basin (Baba \& TUrkay, 1992; Baba \& de Satnt Laurent. 1992). Both species are differentiable by several aspects :

- The supraocular spines distinctly overreach the cornca in M. typhte, not in M. magniantenuilata.
- The distal spine on the basal segment of the antennat peduncle nearly reaches the end of the second segment in M. typhle, in M. magniameunulata this spine is very short and distinctly does not reach the end of this segment.
- The cheliped palm has one row of well developed dorsal spines and the fixed finger has several spines on the proximal half in M. typhle, these spines are absent in M. magniantennulata.
M. typhle is also close to M. parvioculata Baba, 1982, from SE Miyake-jima, 1105 m (BABA, 1982), differing in several features:
- The spines on ilhe branchial margins are more developed in M. parvioculata than in the new species.
- The cheliped is densely setose in M. parvioculata, with few setac in the new species.
- The dactylus of the walking legs are slightly shorter than the propodus, instead of being balf as long as in M. parvioculata.

Dtstributton. - New Caledonia, between 1395 and 1470 m.

Munida urizae sp. nov.

Figs 6t, 88
MA'terial examinied. - New Caledonia. Chalcal 2: stn $4,253 \mathrm{~m}: 1$ of 7.2 mm (MNHN-Ga 3167). - Sin 18 , $274 \mathrm{~m}: 47$ of 4.7 to 10.9 mm ; to ov. \& 7.4 to $9.3 \mathrm{~mm} ; 7$ if 4.0 to 8.9 mm (MNHN-Ga 3168). - Stn 19, $27 \mathrm{t} \mathrm{m}: 1$ б 8.5 mm ; t ov. 96.2 mm (MNHN-Ga 3169) - $\operatorname{Stn} 20,230-300 \mathrm{~m}: 5$ of 6.0 to $10.0 \mathrm{~mm} ; 5$ ov. 98.0 to 9.0 mm (MNHN Ga 3170 and USNM). - Stn $26.296 \mathrm{~m}: 2$ ot 9.5 and $11.2 \mathrm{~mm} ; 3$ 오 ov. 8.2 to $10.4 \mathrm{~mm} ; 1$ if 5.3 mm (MNHN-Ga 3171). — Stn 27. 289 m : 4 ov. 87.7 to 8.2 mm (MNHN.Ga 3172).

Smib $4: \sin 44,270-300 \mathrm{~m} ; \mathrm{t} \delta 8.2 \mathrm{~mm} ; 1 \mathrm{ov} .97 .5 \mathrm{mmin}$ (MNHN-Ga 3t73).
Smbi $5: \sin 90,340 \mathrm{~m}: \mathrm{t}$ ov. 99.5 mm (MNHN-Ga 3174).
LAGON : sin $1153,330 \mathrm{~m}: 296.1$ and 6.3 mm (MNHN Ga 3t75).
Malitiew and Hunler Islands. Volsmar : $\sin 39,305 \mathrm{ml}: \mathrm{tov} .97 .7 \mathrm{~mm}$ (MNHN-Ga 3 t 76).
Chesterfietd Istands. Musorstom $5: \operatorname{stn} 30 \mathrm{t}, 487-610 \mathrm{~m}: 2$ ㅇ 3.6 and 7.4 mm (MNHN-Ga 3177).
TYPES. - One male of 10.0 mm from Chalcal 2, $\operatorname{Stn} 20$ (MNHN-Ga 3170) has been selected as holotype; the other specimens are paratypes.

Fig. 60. - Munida typhle sp. nov., $\delta 6.9 \mathrm{~mm}$, holotype from $\operatorname{Stn} 68$ (BIocal) : a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, right cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Flg. 61. - Munida urizae sp. nov., ot 10.0 mm , holotype from $\operatorname{Stn} 20$ (Chalcal 2) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, right cheliped, dorsal view; \mathbf{f}, right first walking leg, lateral view; \mathbf{g}, dactylus of right first walking leg, lateral view.

Fig. 62. - Munida yante sp. nov., 95.5 mm , holotype from Stn 178 (SMIB 8) : a, carapace, dorsal view; b, sternal plastron; \mathbf{c}, ventral vicw of cephalic region, showing antennular and antennal peduncles; d, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; \mathbf{g}, dactylus of right first walking leg, lateral view.

Etymology. - This species is dedicated to M. J. Urtz of the Centro de Estudios Avanzados, Blanes, for her important contribution to the taxonomy of sponges and support in my work.

DESCRIPTION, - Carapace with few secondary striae. Pair of epigastric spines behind supraoculars and median spine in anterior part of metagastric region. Postcervical spine on each side. Small median spine on posterior margin of carapace. Frontal margins concave. External orbital spine strong, situated at anterolateral angle of carapace, nearly reaching end of supraocular spines. Branchial margin with 4 spines. Fourth thoracic sternite with several short arcuate striac; fifth to seventh sternites smooth. Second, third and fourth abdominal segments each with 4 equal-sized spines on anterior transverse ridge; posterior ridge of fourth segment with median spine. Males with gonopods absent from first abdominal segment. Eye moderately large, maximum comeal diameter $1 / 3$ length of anterior border of carapace between bases of external orbital spines. Basal antennular segment (distal spines excluded) slightly exceeding cornea, distolateral spine longer than distomesial. Basal antennal segment with distomesial spine short, reaching midlength of second segment; distomesial spine on second segment exceeding peduncle; third segment spineless. Merus of third maxilliped with marginal spine near midlength of flexor border; extensor margin with small distal spine. Mesial and lateral borders of movable and fixed fingers of cheliped denticulated. Dactylus of walking legs less than half as long as propodus, ventral border with some median spinules.

Colour. - Ground colour of carapace pinkish; numerous yellow spots, circled by red, on gastric, anterior branchial, and cardiac regions and second abdominal segment: 2 purple spots on posterior part of gastric region; red spots on lateral parts of abdominal segments. Rostrum, supraocular and external orbital spines pinkish. Chelipeds and walking legs with red and pinkish bands; cheliped palm with distal half red; fingers with proximal $2 / 3$ reddish. distal third whitish; dactylus of walking legs reddish.

Remarks. - M. urizae is closely related to M. yante sp. nov. from New Caledonia. Both species have the frontal margins of the carapace concave, however, they differ in several aspects (see below).
M. urizae differs easily from the other species of the area by several important characters. The new species is characterized by the comparatively reduced fourth segment of the endopod of the third maxilliped (the merus in particular) as well as the reduced two distal segments of the antennal peduncle. On the other hand, the concave front margin laterally leading to the unusually external orbital spine is also unique to the species.

SIZE. - The males examined ranged between 4.7 and 11.2 mm . females between 3.6 mm and 9.5 mm ; ovigerous females from 6.2 mm .

Distrtbutton. - New Caledonia, Matthew and Hunter Islands and Chesterfield Islands, between 230 and 610 m .

Munida yante sp. nov.
Figs 62.97
Matertal examined. - New Catedonia. Smib $8: \operatorname{stn}$ DW $178,03.01 .1993,23^{\circ} 45.1^{\circ} \mathrm{S}, 168^{\circ} 17 \mathrm{E} .400 \mathrm{~m}: 1^{\circ}$ 5.5 mm , hototype (MNHN-Ga 3555).

ETYMoLOGY. - The name refers to one of the Oceanids of the Greek mythology (Yante).
Description. - Carapace with few secondary striae. Pair of epigastric spines behind supraoculars. Postcervical spine on each side. Frontal margins concave. External orbital spine strong, situated at anterolateral angle of carapace, not reaching end of supraocular spines. Branchial margin with 4 spines. Fourth and fifth thoracic sternites each with several short arcuate striae; sixth and seventh sternites smooth. Second, third and fourth abdominal segments each with 4 equal-sized spines on anterior transverse ridge; posterior ridge of fourth segment with median spine. Eye large. maximum comeal diameter about $1 / 2$ length of anterior border of carapace between bases of extemal orbital spines. Basal antennular segment (distal spines excluded) slightly exceeding comea, distolateral spine longer than distomesial. Basal antennal segment with distomesial spine slightly overreaching
midlength of second segmeni; dislomesial spine on second segment exceeding peduncle. Merus of third maxilliped with median marginal spine on flexor border; exlensor margin with distal spine. Movable finger of cheliped with basal spine; fixed finger unarmed. Dactylus of walking legs aboul half as long as propodus, ventral border with spinules along entire lengih.

COLOUR. - Ground colour of carapace and abdominal segments red; small white spot on bifurcation of cervical groove. Tip of rostrum and spines of carapace and abdominal segments with while spots. Chelipeds and walking legs with red and white bands; fingers and dislal half of palm red; daclylus of walking legs reddish.

Remarks. - M. yante is closely related lo M. urizae sp. nov. from New Caledonia, Mallhew and Hunler 1slands and Chesicrfield Islands. They are casily distinguishable by the following aspects :

- M. urizae has a median spine on the metagastric region, absent in M. yante.
- The posterior margin of the carapace has a median spine in M. urizae, whereas this margin is unarmed in M. yante.
- The entire ventral margin of the daclylus of the walking legs bears spinules in M. yante; these spinules are restricled to the median portion in M. urizae.
- The colour pallerns are different (see Figs 88 and 97).

Munida zebra sp. nov.

Figs 63, 89
Material examined. - New Caledonia. "Vauban": $22^{\circ} 49$ 'S, $167^{\circ} 12^{\prime} \mathrm{E}, 390 \mathrm{~m}: 1$ ¢ 13.3 mm (MNHN-Ga 3178). - $22^{\circ} 54^{\prime} \mathrm{S}, 167^{\circ} 12{ }^{\circ} \mathrm{E}, 395-410 \mathrm{~m}: 1 \delta^{\circ} 14.6 \mathrm{~mm} ; 1 \mathrm{ov}$. $\uparrow 14.0 \mathrm{~mm}$ (USNM). - Without position, 200 m , 13.10.1978: 1 ठ 11.7 mm (MNHN-Ga 3392).

BtOCAL: $\operatorname{stn} 45,430-465 \mathrm{~m}: 1$ ठ 14.8 mm (MNHN-Ga 3180). - $\operatorname{Stn} 66,505-515 \mathrm{~m}: 1$ 와 $5.3 \mathrm{~mm} ; 1$ juv. 4.0 mm (MNHN.Ga 3181). - $\operatorname{Stn} 67,500-510 \mathrm{~m}: 5$ ¢ 7.2 to $13.8 \mathrm{~mm} ; 6$ ov. 9.10 .0 to $13.8 \mathrm{~mm} ; 3$ ㅇ 7.7 to 17.8 mm (MNHNGa 3374). - Stn $83,460 \mathrm{~m}: 1$ juv. 3.8 mm (MNHN-Ga 3488).

MUSORSTOM $4: \operatorname{stn} 193,430 \mathrm{~m}: 2 \mathrm{ov} .911 .4$ and 14.4 mm (MNHN-Ga 3182). $-\operatorname{Stn} 197,560 \mathrm{~m}: 2 \delta 11.0$ and $12.8 \mathrm{~mm} ; 2$ of 11.0 and 12.6 mm (MNHN-Ga 3376). - Stn 213, $405-430 \mathrm{~m}: 1$ ov. $\uparrow 12.4 \mathrm{~mm}$ (MNHN-Ga 3183). $\operatorname{Stn} 214,425-440 \mathrm{~m}: 5$ ठ 12.1 to $14.6 \mathrm{~mm} ; 1 \mathrm{ov}$. $\uparrow 16.0 \mathrm{~mm}$ (MNHN-Ga 3375). - $\operatorname{Stn} 215,485.520 \mathrm{~m}: 1$ of $14.6 \mathrm{~mm} ; 1 \mathrm{ov}$. 오 14.0 mm (MNHN-Ga 3377). - $\operatorname{Stn} 222,410-440 \mathrm{~m}: 4$ ठ 10.5 to $14.9 \mathrm{~mm} ; 1 \mathrm{ov}$. 우 10.7 mm (USNM). - Stn 228, $420 \mathrm{~m}: 1$ ठै 5.1 mm (MNHN-Ga 3378).

SMIB 1: $\operatorname{stn} 7,500 \mathrm{~m}: 2 \delta 12.3$ and $16.1 \mathrm{~mm} ; 1 \mathrm{ov}$. 오 $13.6 \mathrm{~mm} ; 1$ \& 12.0 mm (MNHN Ga 3381). $-\mathrm{Stn} 9,450 \mathrm{~m}$: 1 ov . 914.8 (MNHN.Ga 3382).

SMIB 2: stn 1, 438-444 m: 1 ठ $11.2 \mathrm{~mm} ; 1$ ov. $\uparrow 12.8 \mathrm{~mm}$ (MNHN-Ga 3185). - Stn 2, $438-444 \mathrm{~m}: 1$ of 7.3 mm (MNHN-Ga 3186). - Stn 3, $428 \mathrm{~m}: 4$ of 11.8 to $13.8 \mathrm{mın} ; 1$ ov. 9.93 .8 mm (MNHN.Ga 3187). - Stn $5,398-410 \mathrm{~m}$: 1 ठ 11.2 mm (MNHN-Ga 3188). - Stn $6,442.460 \mathrm{~m}: 2$ of 9.0 and $12.8 \mathrm{~mm} ; 3 \mathrm{ov}$. ∓ 12.1 to 14.8 mm (MNHN-Ga 3189).

CHALCAL $2: \operatorname{stn} 1,500-580 \mathrm{~m}: 1$ б 15.3 mm (MNHN-Ga 3190). $-\operatorname{Stn} 2,500.610 \mathrm{~m}: 5$ ठ 8.4 to $14.5 \mathrm{~mm} ; 1 \mathrm{ov}$. ㅇ 13.3 mm (MNHN Ga 3191). - Stn 21, $500 \mathrm{~m}: 3$ ठ 10.5 to 13.5 mm ; 3 ㅇ 6.5 to 8.0 mm (MNHN-Ga 3379). - Stn 25 , $418 \mathrm{~m}: 4$ ठ 11.8 to $18.5 \mathrm{~mm} ; 3 \mathrm{ov} .912 .0$ to $16.0 \mathrm{~mm} ; 1$ if 15.7 mm (MNHN-Ga 3380).

SMIB 3: $\operatorname{stn} 1,520 \mathrm{~m}: 9$ б 7.5 to $15.8 \mathrm{~mm} ; 5 \mathrm{ov}$. 95.4 to $11.7 \mathrm{~mm} ; 2$ o 9.1 and 9.2 mm (MNHN-Ga 3385). Stn 3, $513 \mathrm{~m}: 11$ of 8.9 to $16.0 \mathrm{~mm} ; 13 \mathrm{ov}$. 99.7 to $13.3 \mathrm{~mm} ; 20$ ㅇ 5.5 to $11.6 \mathrm{~mm}(\mathrm{MNHN}-\mathrm{Ga} 3192)$. - Stn 5 , $502-$ $512 \mathrm{~m}: 1$ ठ $7.7 \mathrm{~mm} ; 1$ ¢ 10.0 mm (MNHN-Ga 3383). - Stn 6, $505 \mathrm{~m}: 1$ ठ $12.4 \mathrm{~mm} ; 1 \mathrm{ov}$. ¢ $14.2 \mathrm{~mm} ; 1$ ¢ 7.5 mm (MNHN-Ga 3384).

SmtB $4: \operatorname{stn} 34,510-515 \mathrm{~m}: 8 \delta 6.1$ to $15.2 \mathrm{~mm} ; 5$ ㅇ 4.3 to 11.0 mm (MNHN.Ga 3458, 3196). - Stn 36, 530 m :
 6.5 to 15.5 mm (MNHN-Ga 3388). - $\operatorname{Stn} 38,510 \mathrm{~m}: 7$ б 6.2 to $13.1 \mathrm{~mm} ; 699.3$ to 12.6 mm (MNHN-Ga 3389). $\operatorname{Stn} 55,260 \mathrm{~m}: 2$ ठ 11.0 and $11.3 \mathrm{~mm} ; 1 \mathrm{ov}$. $¢ 11.7 \mathrm{~mm} ; 299.5$ and 10.8 mm (MNHN-Ga 3386). - $\operatorname{Stn} 65,420 \mathrm{~m}$: 1 ㅇ 11.3 mm (MNHN Ga 3197).

Smib $5: \operatorname{stn} 98,320-335 \mathrm{~m}: 1 \% 7.2 \mathrm{~mm}(\mathrm{MNHN} \cdot \mathrm{Ga} 3390)$.
Loyalty Islands. Without position, $400 \mathrm{~m}, 03.03 .1977: 2$ of 14.0 and 15.2 mm (MNHN-Ga 3391).
MUSORSTOM 6: $\operatorname{stn} 406,373 \mathrm{~m}: 1$ ठ $12.0 \mathrm{~mm} ; 1$ ¢ 12.0 mm (MNHN-Ga 3193). - Stn $407,360 \mathrm{~m}: 1$ ठ 13.5 mm (MNHN.Ga 3194). - Stn 464, $430 \mathrm{~m}: 2 \delta 7.5$ and 12.6 mm (MNHN-Ga 3195).

Types. - One male of 11.8 mm from SmiB 4, Sin 34 (MNHN-Ga 3196) has been selecled as holotype; the olher specimens are paralypes.

FIG. 63. - Munida zebra sp. nov., $\delta 11.8 \mathrm{~mm}$, holotype from Stn 34 (SMIB 4): a, carapace, dorsal view; b, sternal plastron; c, ventral view of cephalic region, showing antennular and antennal peduncles; \mathbf{d}, right third maxilliped, lateral view; e, left cheliped, dorsal view; f, right first walking leg, lateral view; g, dactylus of right first walking leg, lateral view.

Etymology. - The name zebra is refered io the zebra-like band colour pattern of this species.
DESCRIPTION. - Carapace with secondary striae between principal striac. Intestinal region with one scale. External orbital spine well developed, situated at anterolateral angle of carapace. Branchial margin with 4 spines. Fourth thoracic sternite with several short arcuate striac; fifth to seventh smooth. Second abdominal segment with a row of 4-5 pairs of spines on anterior ridge, occasionally only one median pair. Second segment with three continuous striae; third and fourth segmenis each with two continuous striac. Males with two pairs of gonopods on first and second abdominat segments. Eyc large, maximum comeal diameter about $t / 3$ length of anterior border of carapace between bases of external orbital spines. Basal segment of antennule (distal spines excluded) reaching end of cornea, with 2 subequal distal spines, occasionally distomesial slighily longer than distolateral. First segment of antennal peduncle with strong distal spine on mesial margin exceeding second segment; distomesial spine on second segment exceeding anteunal peduncle. Extensor border of merus of third maxilliped unarmed. Fixed finger of cheliped with several lateral spines; movable finger with one proximal and two sublerminal spines on mesial border. Dactylus of walking legs half as long as propodus, with dorsal movable spinules along entire ventral margin.

Cololir. - Carapace yellow, with purple bands : behind epigastric spines, along cervical groove and posterior zonc of carapace; white spot behind rostrum and on first anterolateral spine. Distal part of rostrum and supraocular spines orange; proximal part of rostrum white. Spines on dorsal surface of carapace with reddish spot. Ground colour of second to fifth abdominal segment yellow, with one purple transverse band on cach segment. Chelipeds and walking legs orange. Distal half of fingers of chelipeds reddish, red spots on merus and near base of movable finger. Dactylus of walking legs orange.

Remarks. - M. zebra resembles M. albiapicula Baba \& Yu. 1987, from Taiwan (BabA \& Yu, 1987), but differs in several features :

- The fixed finger of cheliped in M. zebra bears several lateral marginal spines other than the subterminals, the distal of which is absent in M. albiapicula.
- The ground colour of the carapace and the abdomen of M. albiapicula is orange, whereas M. zebra has yellow and purple bands.
M. zebra is also close to M. erato sp. nov, from New Caledonia and Chesterfield 1slands. The two species can be distinguished by several characters :
- The basal antennular segment distinctly exceeds the cornca in M. crato, whereas this segment ends at the same level in M. zebra.
- Comparing specimens of similar sizes, the carapace and the abdominal segments have more striae in M. erato than in M. zebra.

Size. - The males examined ranged between 5.1 and 18.5 mm , fomales between 4.3 and 17.8 mm ; ovigerous females from 5.4 mm .

Distribution, - New Caledonia and Loyalty 1slands, beiween 200 and 610 m.

Munida sp.

Figs 13b, 90
Material examined. - New Caledonia. Musorstom $4: \sin 159,600 \mathrm{~m}: 1 \mathrm{ov}$. 아 tt .6 mm (MNHN.Ga 3t98). - $\operatorname{Stn} 200,545 \mathrm{~m}: 1 \& 12.8 \mathrm{~mm}$ (MNHN Ga 3199). - $\operatorname{Stn} 202,580 \mathrm{~m}: 2 \delta 8.2$ and $9.5 \mathrm{~mm} ; 2 \mathrm{ov}$. 9 t 2.9 and $14.8 \mathrm{~mm} ; 288.3$ and 8.5 mm (MNHN-Ga 3479). - Stn $22 \mathrm{t}, 535-560 \mathrm{~m}: \mathrm{t} 85.7 \mathrm{~mm}$ (MNHN-Ga 3200). - Stn 238, $500.510 \mathrm{~m}: 1$ đ 7.7 mm (MNHN-Ga 3201). - Stn 239, 470-475 m: 1 ¢ 10.7 mm (MNHN-Ga 3202). - Stn 241, 470$480 \mathrm{~m}: 2$ ס 5.0 and 10.4 mm (USNM). - Stn $242,500.550 \mathrm{~m}: \mathrm{t} \delta 14.7 \mathrm{~mm}$ (USNM).

Chalcal $2: \sin 1,500-580 \mathrm{~m}: 1 \$ 13.3 \mathrm{~mm}$ (MNHN.Ga 3206). - Sin $73,573 \mathrm{~m}: 1 \% 8.5 \mathrm{~mm} ; 1$ ¢ 7.3 mm (MNHN-Ga 3207). - Stn 74, $650 \mathrm{~m}: 189.0 \mathrm{~mm}$ (MNHN Ga 3208). - Stn 75, 600 m: 1 d $5.0 \mathrm{~mm} ; 1$ 오 8.3 mm (MNHN-Ga 3209).

Brogeocal : $\operatorname{stn} 308,510.590 \mathrm{~m}: \mathrm{t}$ o 15.0 mm (MNHN-Ga 3393).

SM1B 4 : $\sin 34,510-515 \mathrm{~m}: 1 \circ 14.3 \mathrm{~mm}$ (MNHN.Ga 3212).
Loyalty Islands. MUSORSTOM $6: \operatorname{stn} 466,540 \mathrm{~m}: 3$ © $10.41012 .0 \mathrm{~mm} ; 1$ ov. $913.7 \mathrm{~mm} ; 5$ \& 10.3 to 15.6 mm (MNHN-Ga 3210).

Remarks. - This species is presently being studied by K. Baba (Kumamoto University, Japan) using specimens collected in northweslern Australia. It is closely relaled lo M. compressa Baba, 1988, and M. cornura sp. nov. from Kiribali (see above).

Munida sp. is easily differentiable from M. cornuta sp. nov. from Kiribati by the presence of numerous shorl slriae on the thoracic sternites, and transverse slriae on the abdominal segments. In M. cornuta the thoracic sternites are smooth and the ahdominal segments have only 3 striac. On the olher hand, the rostrum in M. cornuta is more upwardly directed than in Munida sp.

The ground colour of the carapace and abdominal segments is orange; the rostrum is orange with one red spol on the tip; the chelipeds and walking legs are orange; the fingers of chelipeds are red with while tips; daclylus of the walking legs whilish.

SIZE.- The males examined ranged belween 5.0 and 15.0 mm ; females between 5.7 and 15.6 mm ; ovigerous females from 11.6 mm .

DISTRIBUTION.- The present material was collected in New Caledonia and Loyalty Islands, between 466 and 650 m .

ACKNOWLEDGEMENTS

I am greatly indebled to A. Crosnier and B. RICHER DF FORGES of ORSTOM for placing at my disposal this interesling colleclion. K. BABA of Kumamolo University, with his usual generosily red and improved greatly the manuscripl. Most species have becn illustraled by A. Blasco. P. Laboute and J.-L. Menou of ORSTOM look the photographs in colour. P. F. CLARK (BM) and K. BABA sent to me several types for comparison. To all of them I would like lo express my appreciation.

REFERENCES

BABA, K., 1969a. - Four new gencra with their representatives and six new species of the Galatheidae in the colleclion of the Zoological Laboratory, Kyushu University, with redcfinition of the genus Galathea. OHMU, Occ. Pap. Zool. Lab. Fac. Agr. Kyushu Univ., 2 (1): 1.32.
BabA, K., 1969b. - New addilion to the galahheid fauna of Japan (Crustacca, Anomura). OLIMU, Occ. Pap. Zool. Lab. Fac. Agr. Kyushu Univ., 2 (2) : 33-40.
Baba, K., 1974. - Four new species of galatheidean Crustacea from New Zcaland waters. J. R. Soc. N. Z., 4 (4) : 381 393.

Baba, K., 1982. - Deep-sea galatheidean Crustacca (Decapoda, Anomura) taken by the R/Soyo-Maru in Japancse waters. II. Family Galatheidae. Bull. Nat. Sci. Mus., Tokyo, (A) (Zoology), 8 (3) : 103-118.

Baba, K., 1986a. - Two new anomuran Crustacea (Decapoda: Anomura) from North-West Australia. The Beagle, 3 (1) :15.

Baba, K., 1986b. - Two new species of anomuran crustaceans (Decapoda: Chirostylidae and Galatheidae) from the Andaman Sea. J. Crust. Biol., 6 (3): 625-632.
Baba, K., 1986c. - In: Baba. K., K. Hayashi \& M. Toriyama. Decapod Crustaceans from Continental Shelf And Slope Around Japan, 336 pp. Tokyo, Japan Fisheries Resource Conservation Association.
BABA, K., 1988. - Chirostylid and Galatheid Crustaceans (Decapoda: Anomura) of the "Albalross" Philippine Expedition, 1907-1910. Researches Crust., Special Number $2: \mathrm{v}+203 \mathrm{pp}$.

BABA, K., 1989. - Anomuran Crustacean obtained by dredging from Oshima Strait, Amami-Oshima of the Ryukyu 1slands. Mem. Natr. Sci. Mus., Tokyo, 22: 127-134.
Baba, K., 1990 - Chirostylid and Galatheid Crustaceans of Madagascar (Decapoda, Anomura). Bull. Mus. natn. Hist. nat., Paris, (4) 11, sect. A, (4) : 921-975.

Baba, K. \& Macpherson, E., 1991. - Reexamination of the type material of Munida milifaris Henderson, 1885 (Crustacea: Decapoda: Galatheidae), with the selection of a lectotype. Proc. biol. Soc. Wash., 104 (3) : 538-544.
Baba, K. \& de Saint Laurent, M., 1992. - Chirostylid and galatheid crustaceans (Decapoda: Anomura) from active thermal vent areas in the southwest Pacific. Scient. Mar., 56:321-332.
Baba, K. \& TURKAY, M., 1992. - Munida magniantennulata, a new deepsea Decapod Crustacean (Anomura: Galatheidae) from active thermal vent areas in the Lau Arc Basin. Senckenbergiana marit., 22: 203-210.
BABA, K. \& YU, H., 1987. - Munida albiapicula, a new species of anomuran crustacean (Decapoda: Galatheidae) from Taiwan. Bull. Inst. Zool., 26 (4) : 331-335.
Chace, F. A. Jr., 1942. - The anomuran Crustacea. I. Galatheidea, Reports on the scientific results of the Atlantis expeditions to the West Indies, under the joint auspices of the University of Havaua and Harvard University. Torreia, 11 : 1-106.

Harg, J., 1973. - Galatheidae (Crustacea, Decapoda, Anomura) collected by the F.I.S. Endeavour. Rec. Austr. Mus., 28 (14) : 269-289.

Haig, J., 1974. - The Anomuran crabs of Western Australia: Their distribution in the Indian Ocean and adjacent seas. J. mar. biol. Ass. India, 14 (2) : 443-451.

Hale, H. M., 1927. - The crustaceans of South Australia. Govt. Printer, Adelaide. Part 1: 1-201.
Hale, H. M., 1941. - Decapod Crustacea. Rep. B.AN.Z. Antarctic Res. Exped., (B) 4 : 257-285.
Healy, A. \& Yaldwyn, J., 1970. - Australian crustaceans in colour. A. H. \& A. W. Reed, Sydney, 112 pp., 52 pls.
Henderson, J. R., 1885. - Diagnoses of the new species of Galatheidea collected during the "Challenger" Expedition. Ann. Mag. Nat. Hist., (5) 16: 407-421.
Henderson, J. R., 1888. - Report on the Anomura Collected by H.M.S. Challenger During the Years 1873-76. Rep. scient. Res. Voy. Challenger, Zoology, 27, vi +221 pp., 21 pls.

Macpherson, E., 1991. - A new species of the genus Munida Leach, 1819 (Crustacea, Decapoda, Anomura, Galatheidae) from the Western Indian Ocean, with the redescription of M. africana Doflein and Balss, 1913. Scient. Mar., 55: 551556.

Macpherson, E., 1993. - Crustacea Decapoda: Species of the genus Munida Leach, 1820 (Galatheidac) collected during the Musorstom and Corindon cruises in the Philippines and Indonesia. In : A. Crosnier (ed.), Résultats des Campagnes Musorstom, Vol. 10. Mém. Mus. natn. Hist. nat., 156: 421-442.
Macpherson, E. \& Baba, K., 1993. - Crustacea Decapoda : Munida japonica Stimpson, 1858, and related species (Galatheidae). In : A. Crosnier (ed.), Résultats des Campagnes Musorstom, Vol. 10. Mém. Mus. natn. Hist. nat., 156: 381-420.

Macpherson, E. \& de Saint Laurent, M., 1991. - Galatheid crustaceans of the genus Munida from French Polynesia. Bull. Mus. natn. Hist. nat., Paris , (4), 13, sect. A, (3-4) : 373-422.
Miers, J. E., 1874. - Crustacea : 5, 4 pls. In : J. Richardson \& J. E. Gray (eds), The zoology of the voyage of H.M.S. Erebus \& Terror, under the command of Captain Sir James Clark Ross, during the years 1839 to 1843. Vol. 2. E.W. Janson, London.

Miers, J. E., 1884. - Crustacea. In : Report on the Zoological Collections Made in the Indo-Pacific Ocean During the Voyage of H.M.S. "Alert" 1881-2: 178-322, 513-575, pls. 18-34. 46-52. London.
Miyake, S. \& Baba, K., 1967a. - Descriptions of new species of galatheids from the western Pacific. J. Fac. Agr., Kyushu Univ., 14 (2) : 203-212.
MIYake, S. \& BABA, K., 1967b. - New and rare species of the family Galatheidae (Crustacea, Anomura) from the Sagami Bay in the collection of the Biological Laboratory, lmperial Houschold, Japan. J. Fac. Agr. Kyushu Univ., 14 (2) : 213-224.

Ortmann, A., 1894. - Crustaceen. In : Semon, R., Zoologische Forschungsreisen in Australien und dem malayischen Archipel. Denkschr. mediz, naturwiss. Ges. Jena, 8:3.80, pls 1.3.
Rice, A. 1. \& de Saint Laurent, M., 1986. - The nomenclature and diagnostic characters of four north-eastern Atlantic species of the genus Munida Leach : M. rugosa (Fabricius), M tenuimana G.O. Sars, M. intermedia A. Milne Edwards and Bouvier, and M. sarsi Huus (Crustacea Decapoda Galatheidae). J. Nat. Hist., 30 : 143-163.
Richer de Forges, B., 1990. - Les campagnes d'exploration de la faune bathyale dans la zone économique de la NouvelleCalédonie. In: : A. Crosner (ed.), Résultats des Campagnes Musorstom, Vol. 6. Mém. Mus. natn. Hist. nat., (A) 145: 9-54.

Tirmizi, N. M., 1966. - Crustacea : Galatheidae. Scient. Rep. John Murray Exped., 11 (2) : 167-234.
Tirmlzi, N. M. \& Javaid, W., 1992. - Two new species of Munida Leach, 1820 (Decapoda, Anomura, Galatheidae) from the Indian Ocean. Crustaceana, 62: 312-318.
Whitelegge, T., 1900. - Scientific results of the trawling expeditions of H.M.C.S. "Thetis". Crustacea. Part 1. Mem. Aust. Mus., 4 : 133-199.
Zariquiey Alvarez, R., 1952. - Estudio de las especies europeas del gen. Munida Leach 1818. Eos, 28 : 143.231.

COLOUR PHOTOGRAPHS

Fig. 64. - Munida acantha sp. nov., $\%$ paratype (6.0 mm). Smib 6, Stn 118.
FIG. 65. - Munida armilla sp. nov., ठ paratype (13.3 mm). SmB 4, Stn 34.
Frg. 66. - Munida bellior Miyake \& Baba, ov. $\%(12.3 \mathrm{~mm}$). Musorstom 6, Str 419.
Fig. 67. - Munida callista sp. nov., δ paratype (11.7 mm). Bathus 3, $\operatorname{Stn} 814$.
Fig. 68. - Munida distiza sp. nov., ठ paratype (8.2 mm). Musorstom 6, $\operatorname{Stn} 419$.
Fig. 69. - Munida distiza sp. nov., ठ paratype (8.2 mm). Musorstom 6, Stn 419, ventral view.
FIG. 70. - Munida eclepsis sp. nov., $\dot{+}$ holotype (11.0 mm). SMIB 4, Stn 34.
Fig. 71. - Munida elachia sp. nov., 9 paratype (4.3 mm). CHALCAL 2, $\operatorname{Stn} 74$.
Fig. 72. - Munida eminens Baba, ơ (12.0 mm). Musorstom 6, Stn 438.
Fig. 73. - Munida guttata sp. nov., ov. \& paratype (13.6 mm). SMB 4, Stn 51.
Fig. 74. - Munida incerta Henderson, 9 (17.5 mm). Musorstom 6, Stn 466.
FIG. 75. - Munida javieri sp. nov., ㅇ paratype (6.0 mm). SMIB 4, $\operatorname{Stn} 44$.
FIG. 76. - Munida leagora sp. nov., के paratype (11.4 mm). Smib 4, Stn 38.
FIG. 77. - Munida marini sp. nov., $\&$ paratype (24.2 mm). Chalcal 2, $\operatorname{Stn} 21$.
Fig. 78. - Munida notata sp. nov., ov. \& paratype (9.4 mm). Musorstom 6, $\operatorname{Stn} 399$.
Fig. 79. - Munida ocyrhoe sp. nov., ov. \& paratype (25.0 mm). Smb 4, Stn 62.
FIG. 80. - Munida olivarae sp. nov., ठt holotype (6.3 mm). Musorstom 6, $\operatorname{Sin} 436$.
Fig. 81. - Munida rhodonia sp. nov., ס paratype (13.3 mm). Musorstom 6, Stn 470.
Fig. 82. - Munida rosula sp. nov., ठ paratype (10.4 mm). Musorstom 6, Stn 438.
Fig. 83. - Munida rufiantennulata Baba, ơ (9.0 mm). Musorstom 5, $\operatorname{Stn} 301$.
Fig. 84. - Munida spilota sp. nov., ठ paratype (7.6 mm). Smib 4, Stn 42.
FIG. 85. - Munida stigmatica sp. nov., ठ paratype (8.4 mm). S.MiB 5, stn 84.
FIG. 86. - Munida taenia sp. nov., ठ holotype (7.5 mm). Smib 4, Stn 56.
Fig. 87. - Munida thoe sp. nov., ठ paratype (12.4 mm). Smib 4, Stn 34.
Fig. 88. - Munida urizae sp. nov., ठै paratype (8.2 mm). SmiB 4, Stn 44.
Fig. 89. - Munida zebra sp. nov., δ holotype (11.8 mm). $\mathrm{SmIB} 4, \mathrm{Stn} 34$.
FIG. 90. - Munida sp., $\%$ (14.3 mm). SmiB 4, $\operatorname{Stn} 34$.
Fig. 91. - Munida callirrhoe sp. nov., ठ paratype (14.6 mm). Musorstom 6, $\operatorname{Stn} 412$.
Fig. 92. - Munida laurentae sp. nov.. 9 paratype (14.8 mm). Musorstom 6, $\operatorname{Stn} 466$.
FIG. 93. - Munida psamathe sp. nov., δ holotype (5.8 mm). Chalcal 2, $\operatorname{Sin} 73$.
Fig. 94. - Munida pseliophora sp. nov., δ holotype (9.0 mm). MuSOrstom 6, Stn 419.
FIG. 95. - Munida sphecia sp. nov., ठ paratype (15.6 mm). Musorstom 6, S tn 460.
Fig. 96. - Munida squamosa Henderson, 9 (15.6 mm). Musorstom 6, Stn 467.
FIG. 97. - Munida yante sp. nov., $\%$ holotype (5.5 mm). S MIB 8, Stn 178.

